logo

Kelionės pardavėjo problema naudojant šaką ir surištą

Atsižvelgiant į miestų rinkinį ir atstumą tarp kiekvienos miestų poros, problema yra surasti trumpiausią įmanomą turą, kuris tiksliai vieną kartą lankosi kiekviename mieste ir grįžta į pradžios tašką.
 

Euler1' title=




Pavyzdžiui, apsvarstykite paveikslėlyje pavaizduotoje diagramoje dešinėje. TSP turas grafike yra 0-1-3-2-0. Kelionės kaina yra 10+25+30+15, tai yra 80.
Mes aptarėme šiuos sprendimus 
1) Naivus ir dinamiškas programavimas  
2) Apytikslis sprendimas naudojant MST
  
 
Šaka ir surištas sprendimas  
Kaip matyti ankstesniuose filialo straipsniuose ir surištas dabartinio mazgo medžio metodu, apskaičiuojame geriausią įmanomą sprendimą, kurį galime gauti, jei nusileisime šiam mazgui. Jei pats geriausias sprendimas yra blogesnis už dabartinį geriausią (geriausiai apskaičiuotas iki šiol), tada mes nepaisome subtilybės, pagrįstos mazgu. 
Atminkite, kad išlaidos per mazgą apima dvi išlaidas. 
1) Mazgo pasiekimo iš šaknies išlaidos (kai pasiekiame mazgą, mes apskaičiuojame šią kainą) 
2) Atsakymo iš dabartinio mazgo pasiekimo išlaidos iki lapo (mes apskaičiuojame šios išlaidos, kad nuspręstume, ar nekreipti dėmesio į šį mazgą, ar ne).
 

  • A atvejais Maksimizavimo problema Viršutinė riba mums nurodo maksimalų įmanomą sprendimą, jei sekame duotą mazgą. Pavyzdžiui 0/1 „Knapsack“ mes panaudojome godų požiūrį, norėdami rasti viršutinę ribą .
  • A atvejais minimizavimo problema Apatinė riba mums nurodo minimalų įmanomą sprendimą, jei sekame duotą mazgą. Pavyzdžiui Darbo priskyrimo problema Mes gauname mažesnę ribą, nes darbuotojui priskiriame mažiausiai kainą.


Filiale ir surišta sudėtinga dalis yra išsiaiškinti būdą, kaip apskaičiuoti geriausią įmanomą sprendimą. Žemiau yra idėja, naudojama apskaičiuoti keliaujančio pardavėjo problemos ribas.
Bet kurios kelionių kaina gali būti parašyta taip, kaip žemiau.
 

Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V


Pavyzdžiui, apsvarstykite aukščiau pateiktą parodytą grafiką. Žemiau yra minimalios kainos du kraštai, esantys greta kiekvieno mazgo. 
 



Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer   this   for one more example.


Dabar turime idėją apie apatinės ribos apskaičiavimą. Pažiūrėkime, kaip tai pritaikyti valstybiniame kosminio paieškos medyje. Mes pradedame išvardyti visus įmanomus mazgus (geriausia - leksikografine tvarka)
1. Šaknies mazgas: Nepamiršdami bendrumo, mes manome, kad pradedame nuo viršūnės „0“, kuriai aukščiau buvo apskaičiuota apatinė riba.
Sprendimas su 2 lygiu: Kitame lygyje išvardijamos visos įmanomos viršūnės, į kurias galime pereiti (turint omenyje, kad bet kuriame kelyje turi įvykti tik vieną kartą viršūnė), kurios yra 1 2 3 ... n (atkreipkite dėmesį, kad grafikas baigtas). Apsvarstykite, kad mes skaičiuojame 1 viršūnę, nes mes perėjome nuo 0 iki 1, mūsų turas dabar apėmė kraštą 0-1. Tai leidžia mums atlikti būtinus pokyčius apatinės šaknies ribos. 
 

Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1)


Kaip tai veikia? Norėdami įtraukti kraštą 0-1, mes pridedame krašto kainą 0-1 ir atimame krašto svorį, kad apatinė riba liktų kuo sandariau, tai būtų mažiausių 0 ir 1 kraštų, padalytų iš 2, suma. Aišku, kad kraštas atimamas, negali būti mažesnis.
Susidūrimas su kitais lygiais: Pereidami į kitą lygį, mes vėl išvardijame visas įmanomas viršūnes. Aukščiau pateiktam atvejui po 1 mes patikriname 2 3 4 ... n. 
Apsvarstykite, ar 2, kai judėjome nuo 1 iki 1, į ekskursiją įtraukiame kraštą 1-2 ir pakeiskite naują šio mazgo apatinę ribą.
 

Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2)


Pastaba: vienintelis formulės pokytis yra tas, kad šį kartą mes įtraukėme antrą minimalią briaunos kainą už 1, nes mažiausios krašto išlaidos jau buvo atimtos ankstesniame lygyje. 
 



C++
// C++ program to solve Traveling Salesman Problem // using Branch and Bound. #include    using namespace std; const int N = 4; // final_path[] stores the final solution ie the // path of the salesman. int final_path[N+1]; // visited[] keeps track of the already visited nodes // in a particular path bool visited[N]; // Stores the final minimum weight of shortest tour. int final_res = INT_MAX; // Function to copy temporary solution to // the final solution void copyToFinal(int curr_path[]) {  for (int i=0; i<N; i++)  final_path[i] = curr_path[i];  final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i int firstMin(int adj[N][N] int i) {  int min = INT_MAX;  for (int k=0; k<N; k++)  if (adj[i][k]<min && i != k)  min = adj[i][k];  return min; } // function to find the second minimum edge cost // having an end at the vertex i int secondMin(int adj[N][N] int i) {  int first = INT_MAX second = INT_MAX;  for (int j=0; j<N; j++)  {  if (i == j)  continue;  if (adj[i][j] <= first)  {  second = first;  first = adj[i][j];  }  else if (adj[i][j] <= second &&  adj[i][j] != first)  second = adj[i][j];  }  return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[] void TSPRec(int adj[N][N] int curr_bound int curr_weight  int level int curr_path[]) {  // base case is when we have reached level N which  // means we have covered all the nodes once  if (level==N)  {  // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level-1]][curr_path[0]] != 0)  {  // curr_res has the total weight of the  // solution we got  int curr_res = curr_weight +  adj[curr_path[level-1]][curr_path[0]];  // Update final result and final path if  // current result is better.  if (curr_res < final_res)  {  copyToFinal(curr_path);  final_res = curr_res;  }  }  return;  }  // for any other level iterate for all vertices to  // build the search space tree recursively  for (int i=0; i<N; i++)  {  // Consider next vertex if it is not same (diagonal  // entry in adjacency matrix and not visited  // already)  if (adj[curr_path[level-1]][i] != 0 &&  visited[i] == false)  {  int temp = curr_bound;  curr_weight += adj[curr_path[level-1]][i];  // different computation of curr_bound for  // level 2 from the other levels  if (level==1)  curr_bound -= ((firstMin(adj curr_path[level-1]) +  firstMin(adj i))/2);  else  curr_bound -= ((secondMin(adj curr_path[level-1]) +  firstMin(adj i))/2);  // curr_bound + curr_weight is the actual lower bound  // for the node that we have arrived on  // If current lower bound < final_res we need to explore  // the node further  if (curr_bound + curr_weight < final_res)  {  curr_path[level] = i;  visited[i] = true;  // call TSPRec for the next level  TSPRec(adj curr_bound curr_weight level+1  curr_path);  }  // Else we have to prune the node by resetting  // all changes to curr_weight and curr_bound  curr_weight -= adj[curr_path[level-1]][i];  curr_bound = temp;  // Also reset the visited array  memset(visited false sizeof(visited));  for (int j=0; j<=level-1; j++)  visited[curr_path[j]] = true;  }  } } // This function sets up final_path[]  void TSP(int adj[N][N]) {  int curr_path[N+1];  // Calculate initial lower bound for the root node  // using the formula 1/2 * (sum of first min +  // second min) for all edges.  // Also initialize the curr_path and visited array  int curr_bound = 0;  memset(curr_path -1 sizeof(curr_path));  memset(visited 0 sizeof(curr_path));  // Compute initial bound  for (int i=0; i<N; i++)  curr_bound += (firstMin(adj i) +  secondMin(adj i));  // Rounding off the lower bound to an integer  curr_bound = (curr_bound&1)? curr_bound/2 + 1 :  curr_bound/2;  // We start at vertex 1 so the first vertex  // in curr_path[] is 0  visited[0] = true;  curr_path[0] = 0;  // Call to TSPRec for curr_weight equal to  // 0 and level 1  TSPRec(adj curr_bound 0 1 curr_path); } // Driver code int main() {  //Adjacency matrix for the given graph  int adj[N][N] = { {0 10 15 20}  {10 0 35 25}  {15 35 0 30}  {20 25 30 0}  };  TSP(adj);  printf('Minimum cost : %dn' final_res);  printf('Path Taken : ');  for (int i=0; i<=N; i++)  printf('%d ' final_path[i]);  return 0; } 
Java
// Java program to solve Traveling Salesman Problem // using Branch and Bound. import java.util.*; class GFG {    static int N = 4;  // final_path[] stores the final solution ie the  // path of the salesman.  static int final_path[] = new int[N + 1];  // visited[] keeps track of the already visited nodes  // in a particular path  static boolean visited[] = new boolean[N];  // Stores the final minimum weight of shortest tour.  static int final_res = Integer.MAX_VALUE;  // Function to copy temporary solution to  // the final solution  static void copyToFinal(int curr_path[])  {  for (int i = 0; i < N; i++)  final_path[i] = curr_path[i];  final_path[N] = curr_path[0];  }  // Function to find the minimum edge cost  // having an end at the vertex i  static int firstMin(int adj[][] int i)  {  int min = Integer.MAX_VALUE;  for (int k = 0; k < N; k++)  if (adj[i][k] < min && i != k)  min = adj[i][k];  return min;  }  // function to find the second minimum edge cost  // having an end at the vertex i  static int secondMin(int adj[][] int i)  {  int first = Integer.MAX_VALUE second = Integer.MAX_VALUE;  for (int j=0; j<N; j++)  {  if (i == j)  continue;  if (adj[i][j] <= first)  {  second = first;  first = adj[i][j];  }  else if (adj[i][j] <= second &&  adj[i][j] != first)  second = adj[i][j];  }  return second;  }  // function that takes as arguments:  // curr_bound -> lower bound of the root node  // curr_weight-> stores the weight of the path so far  // level-> current level while moving in the search  // space tree  // curr_path[] -> where the solution is being stored which  // would later be copied to final_path[]  static void TSPRec(int adj[][] int curr_bound int curr_weight  int level int curr_path[])  {  // base case is when we have reached level N which  // means we have covered all the nodes once  if (level == N)  {  // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level - 1]][curr_path[0]] != 0)  {  // curr_res has the total weight of the  // solution we got  int curr_res = curr_weight +  adj[curr_path[level-1]][curr_path[0]];    // Update final result and final path if  // current result is better.  if (curr_res < final_res)  {  copyToFinal(curr_path);  final_res = curr_res;  }  }  return;  }  // for any other level iterate for all vertices to  // build the search space tree recursively  for (int i = 0; i < N; i++)  {  // Consider next vertex if it is not same (diagonal  // entry in adjacency matrix and not visited  // already)  if (adj[curr_path[level-1]][i] != 0 &&  visited[i] == false)  {  int temp = curr_bound;  curr_weight += adj[curr_path[level - 1]][i];  // different computation of curr_bound for  // level 2 from the other levels  if (level==1)  curr_bound -= ((firstMin(adj curr_path[level - 1]) +  firstMin(adj i))/2);  else  curr_bound -= ((secondMin(adj curr_path[level - 1]) +  firstMin(adj i))/2);  // curr_bound + curr_weight is the actual lower bound  // for the node that we have arrived on  // If current lower bound < final_res we need to explore  // the node further  if (curr_bound + curr_weight < final_res)  {  curr_path[level] = i;  visited[i] = true;  // call TSPRec for the next level  TSPRec(adj curr_bound curr_weight level + 1  curr_path);  }  // Else we have to prune the node by resetting  // all changes to curr_weight and curr_bound  curr_weight -= adj[curr_path[level-1]][i];  curr_bound = temp;  // Also reset the visited array  Arrays.fill(visitedfalse);  for (int j = 0; j <= level - 1; j++)  visited[curr_path[j]] = true;  }  }  }  // This function sets up final_path[]   static void TSP(int adj[][])  {  int curr_path[] = new int[N + 1];  // Calculate initial lower bound for the root node  // using the formula 1/2 * (sum of first min +  // second min) for all edges.  // Also initialize the curr_path and visited array  int curr_bound = 0;  Arrays.fill(curr_path -1);  Arrays.fill(visited false);  // Compute initial bound  for (int i = 0; i < N; i++)  curr_bound += (firstMin(adj i) +  secondMin(adj i));  // Rounding off the lower bound to an integer  curr_bound = (curr_bound==1)? curr_bound/2 + 1 :  curr_bound/2;  // We start at vertex 1 so the first vertex  // in curr_path[] is 0  visited[0] = true;  curr_path[0] = 0;  // Call to TSPRec for curr_weight equal to  // 0 and level 1  TSPRec(adj curr_bound 0 1 curr_path);  }    // Driver code  public static void main(String[] args)   {  //Adjacency matrix for the given graph  int adj[][] = {{0 10 15 20}  {10 0 35 25}  {15 35 0 30}  {20 25 30 0} };  TSP(adj);  System.out.printf('Minimum cost : %dn' final_res);  System.out.printf('Path Taken : ');  for (int i = 0; i <= N; i++)   {  System.out.printf('%d ' final_path[i]);  }  } } /* This code contributed by PrinciRaj1992 */ 
Python3
# Python3 program to solve  # Traveling Salesman Problem using  # Branch and Bound. import math maxsize = float('inf') # Function to copy temporary solution # to the final solution def copyToFinal(curr_path): final_path[:N + 1] = curr_path[:] final_path[N] = curr_path[0] # Function to find the minimum edge cost  # having an end at the vertex i def firstMin(adj i): min = maxsize for k in range(N): if adj[i][k] < min and i != k: min = adj[i][k] return min # function to find the second minimum edge  # cost having an end at the vertex i def secondMin(adj i): first second = maxsize maxsize for j in range(N): if i == j: continue if adj[i][j] <= first: second = first first = adj[i][j] elif(adj[i][j] <= second and adj[i][j] != first): second = adj[i][j] return second # function that takes as arguments: # curr_bound -> lower bound of the root node # curr_weight-> stores the weight of the path so far # level-> current level while moving # in the search space tree # curr_path[] -> where the solution is being stored # which would later be copied to final_path[] def TSPRec(adj curr_bound curr_weight level curr_path visited): global final_res # base case is when we have reached level N  # which means we have covered all the nodes once if level == N: # check if there is an edge from # last vertex in path back to the first vertex if adj[curr_path[level - 1]][curr_path[0]] != 0: # curr_res has the total weight # of the solution we got curr_res = curr_weight + adj[curr_path[level - 1]] [curr_path[0]] if curr_res < final_res: copyToFinal(curr_path) final_res = curr_res return # for any other level iterate for all vertices # to build the search space tree recursively for i in range(N): # Consider next vertex if it is not same  # (diagonal entry in adjacency matrix and  # not visited already) if (adj[curr_path[level-1]][i] != 0 and visited[i] == False): temp = curr_bound curr_weight += adj[curr_path[level - 1]][i] # different computation of curr_bound  # for level 2 from the other levels if level == 1: curr_bound -= ((firstMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2) else: curr_bound -= ((secondMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2) # curr_bound + curr_weight is the actual lower bound  # for the node that we have arrived on. # If current lower bound < final_res  # we need to explore the node further if curr_bound + curr_weight < final_res: curr_path[level] = i visited[i] = True # call TSPRec for the next level TSPRec(adj curr_bound curr_weight level + 1 curr_path visited) # Else we have to prune the node by resetting  # all changes to curr_weight and curr_bound curr_weight -= adj[curr_path[level - 1]][i] curr_bound = temp # Also reset the visited array visited = [False] * len(visited) for j in range(level): if curr_path[j] != -1: visited[curr_path[j]] = True # This function sets up final_path def TSP(adj): # Calculate initial lower bound for the root node  # using the formula 1/2 * (sum of first min +  # second min) for all edges. Also initialize the  # curr_path and visited array curr_bound = 0 curr_path = [-1] * (N + 1) visited = [False] * N # Compute initial bound for i in range(N): curr_bound += (firstMin(adj i) + secondMin(adj i)) # Rounding off the lower bound to an integer curr_bound = math.ceil(curr_bound / 2) # We start at vertex 1 so the first vertex  # in curr_path[] is 0 visited[0] = True curr_path[0] = 0 # Call to TSPRec for curr_weight  # equal to 0 and level 1 TSPRec(adj curr_bound 0 1 curr_path visited) # Driver code # Adjacency matrix for the given graph adj = [[0 10 15 20] [10 0 35 25] [15 35 0 30] [20 25 30 0]] N = 4 # final_path[] stores the final solution  # i.e. the // path of the salesman. final_path = [None] * (N + 1) # visited[] keeps track of the already # visited nodes in a particular path visited = [False] * N # Stores the final minimum weight # of shortest tour. final_res = maxsize TSP(adj) print('Minimum cost :' final_res) print('Path Taken : ' end = ' ') for i in range(N + 1): print(final_path[i] end = ' ') # This code is contributed by ng24_7 
C#
// C# program to solve Traveling Salesman Problem // using Branch and Bound. using System; public class GFG {  static int N = 4;  // final_path[] stores the final solution ie the  // path of the salesman.  static int[] final_path = new int[N + 1];  // visited[] keeps track of the already visited nodes  // in a particular path  static bool[] visited = new bool[N];  // Stores the final minimum weight of shortest tour.  static int final_res = Int32.MaxValue;  // Function to copy temporary solution to  // the final solution  static void copyToFinal(int[] curr_path)  {  for (int i = 0; i < N; i++)  final_path[i] = curr_path[i];  final_path[N] = curr_path[0];  }  // Function to find the minimum edge cost  // having an end at the vertex i  static int firstMin(int[ ] adj int i)  {  int min = Int32.MaxValue;  for (int k = 0; k < N; k++)  if (adj[i k] < min && i != k)  min = adj[i k];  return min;  }  // function to find the second minimum edge cost  // having an end at the vertex i  static int secondMin(int[ ] adj int i)  {  int first = Int32.MaxValue second = Int32.MaxValue;  for (int j = 0; j < N; j++) {  if (i == j)  continue;  if (adj[i j] <= first) {  second = first;  first = adj[i j];  }  else if (adj[i j] <= second  && adj[i j] != first)  second = adj[i j];  }  return second;  }  // function that takes as arguments:  // curr_bound -> lower bound of the root node  // curr_weight-> stores the weight of the path so far  // level-> current level while moving in the search  // space tree  // curr_path[] -> where the solution is being stored  // which  // would later be copied to final_path[]  static void TSPRec(int[ ] adj int curr_bound  int curr_weight int level  int[] curr_path)  {  // base case is when we have reached level N which  // means we have covered all the nodes once  if (level == N) {  // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level - 1] curr_path[0]]  != 0) {  // curr_res has the total weight of the  // solution we got  int curr_res = curr_weight  + adj[curr_path[level - 1]  curr_path[0]];  // Update final result and final path if  // current result is better.  if (curr_res < final_res) {  copyToFinal(curr_path);  final_res = curr_res;  }  }  return;  }  // for any other level iterate for all vertices to  // build the search space tree recursively  for (int i = 0; i < N; i++) {  // Consider next vertex if it is not same  // (diagonal entry in adjacency matrix and not  // visited already)  if (adj[curr_path[level - 1] i] != 0  && visited[i] == false) {  int temp = curr_bound;  curr_weight += adj[curr_path[level - 1] i];  // different computation of curr_bound for  // level 2 from the other levels  if (level == 1)  curr_bound  -= ((firstMin(adj  curr_path[level - 1])  + firstMin(adj i))  / 2);  else  curr_bound  -= ((secondMin(adj  curr_path[level - 1])  + firstMin(adj i))  / 2);  // curr_bound + curr_weight is the actual  // lower bound for the node that we have  // arrived on If current lower bound <  // final_res we need to explore the node  // further  if (curr_bound + curr_weight < final_res) {  curr_path[level] = i;  visited[i] = true;  // call TSPRec for the next level  TSPRec(adj curr_bound curr_weight  level + 1 curr_path);  }  // Else we have to prune the node by  // resetting all changes to curr_weight and  // curr_bound  curr_weight -= adj[curr_path[level - 1] i];  curr_bound = temp;  // Also reset the visited array  Array.Fill(visited false);  for (int j = 0; j <= level - 1; j++)  visited[curr_path[j]] = true;  }  }  }  // This function sets up final_path[]  static void TSP(int[ ] adj)  {  int[] curr_path = new int[N + 1];  // Calculate initial lower bound for the root node  // using the formula 1/2 * (sum of first min +  // second min) for all edges.  // Also initialize the curr_path and visited array  int curr_bound = 0;  Array.Fill(curr_path -1);  Array.Fill(visited false);  // Compute initial bound  for (int i = 0; i < N; i++)  curr_bound  += (firstMin(adj i) + secondMin(adj i));  // Rounding off the lower bound to an integer  curr_bound = (curr_bound == 1) ? curr_bound / 2 + 1  : curr_bound / 2;  // We start at vertex 1 so the first vertex  // in curr_path[] is 0  visited[0] = true;  curr_path[0] = 0;  // Call to TSPRec for curr_weight equal to  // 0 and level 1  TSPRec(adj curr_bound 0 1 curr_path);  }  // Driver code  static public void Main()  {  // Adjacency matrix for the given graph  int[ ] adj = { { 0 10 15 20 }  { 10 0 35 25 }  { 15 35 0 30 }  { 20 25 30 0 } };  TSP(adj);  Console.WriteLine('Minimum cost : ' + final_res);  Console.Write('Path Taken : ');  for (int i = 0; i <= N; i++) {  Console.Write(final_path[i] + ' ');  }  } } // This code is contributed by Rohit Pradhan 
JavaScript
const N = 4; // final_path[] stores the final solution ie the // path of the salesman.  let final_path = Array (N + 1).fill (-1);   // visited[] keeps track of the already visited nodes // in a particular path  let visited = Array (N).fill (false); // Stores the final minimum weight of shortest tour.  let final_res = Number.MAX_SAFE_INTEGER; // Function to copy temporary solution to // the final solution function copyToFinal (curr_path){  for (let i = 0; i < N; i++){  final_path[i] = curr_path[i];  }  final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i function firstMin (adj i){ let min = Number.MAX_SAFE_INTEGER;  for (let k = 0; k < N; k++){  if (adj[i][k] < min && i !== k){  min = adj[i][k];  }  }  return min; } // function to find the second minimum edge cost // having an end at the vertex i function secondMin (adj i){  let first = Number.MAX_SAFE_INTEGER;  let second = Number.MAX_SAFE_INTEGER;  for (let j = 0; j < N; j++){  if (i == j){  continue;  }  if (adj[i][j] <= first){  second = first;  first = adj[i][j];  }  else if (adj[i][j] <= second && adj[i][j] !== first){  second = adj[i][j];  }  }  return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[]  function TSPRec (adj curr_bound curr_weight level curr_path) {   // base case is when we have reached level N which // means we have covered all the nodes once  if (level == N)  {   // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level - 1]][curr_path[0]] !== 0)  {    // curr_res has the total weight of the  // solution we got  let curr_res =  curr_weight + adj[curr_path[level - 1]][curr_path[0]];    // Update final result and final path if  // current result is better.  if (curr_res < final_res)  {  copyToFinal (curr_path);  final_res = curr_res;  }  }  return;   }    // for any other level iterate for all vertices to  // build the search space tree recursively  for (let i = 0; i < N; i++){    // Consider next vertex if it is not same (diagonal  // entry in adjacency matrix and not visited  // already)  if (adj[curr_path[level - 1]][i] !== 0 && !visited[i]){    let temp = curr_bound;  curr_weight += adj[curr_path[level - 1]][i];    // different computation of curr_bound for  // level 2 from the other levels  if (level == 1){  curr_bound -= (firstMin (adj curr_path[level - 1]) + firstMin (adj i)) / 2;   }  else  {  curr_bound -= (secondMin (adj curr_path[level - 1]) + firstMin (adj i)) / 2;   }    // curr_bound + curr_weight is the actual lower bound  // for the node that we have arrived on  // If current lower bound < final_res we need to explore  // the node further  if (curr_bound + curr_weight < final_res){  curr_path[level] = i;  visited[i] = true;   // call TSPRec for the next level  TSPRec (adj curr_bound curr_weight level + 1 curr_path);   }    // Else we have to prune the node by resetting  // all changes to curr_weight and curr_bound  curr_weight -= adj[curr_path[level - 1]][i];  curr_bound = temp;    // Also reset the visited array  visited.fill (false)   for (var j = 0; j <= level - 1; j++)  visited[curr_path[j]] = true;   }   } }  // This function sets up final_path[]   function TSP (adj) {   let curr_path = Array (N + 1).fill (-1);   // Calculate initial lower bound for the root node // using the formula 1/2 * (sum of first min + // second min) for all edges. // Also initialize the curr_path and visited array  let curr_bound = 0;   visited.fill (false);    // compute initial bound  for (let i = 0; i < N; i++){  curr_bound += firstMin (adj i) + secondMin (adj i);    }    // Rounding off the lower bound to an integer  curr_bound = curr_bound == 1 ? (curr_bound / 2) + 1 : (curr_bound / 2);   // We start at vertex 1 so the first vertex // in curr_path[] is 0  visited[0] = true;   curr_path[0] = 0;   // Call to TSPRec for curr_weight equal to // 0 and level 1  TSPRec (adj curr_bound 0 1 curr_path); } //Adjacency matrix for the given graph  let adj =[[0 10 15 20]   [10 0 35 25]  [15 35 0 30]  [20 25 30 0]];   TSP (adj);   console.log (`Minimum cost:${final_res}`); console.log (`Path Taken:${final_path.join (' ')}`);  // This code is contributed by anskalyan3. 

Išvestis:  
 

Minimum cost : 80 Path Taken : 0 1 3 2 0 

Apvalumas atliekamas šioje kodo eilutėje:

if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2); 

Šakelėje ir surištame TSP algoritme apskaičiuojame mažesnę optimalaus sprendimo sąnaudas, sudedant minimalias kiekvienos viršūnės krašto sąnaudas ir padaliję iš dviejų. Tačiau ši apatinė riba gali būti ne sveikas skaičius. Norėdami gauti sveiką skaičių apatinę ribą, galime naudoti apvalinimą.

Aukščiau pateiktame kode kintamasis „Curr_bound“ laiko dabartinę apatinę optimalaus sprendimo sąnaudas. Apsilankę naujoje viršūnėje lygio lygyje, apskaičiuojame naują apatinę ribą „New_bound“, paėmę minimalių naujos viršūnės ir dviejų artimiausių kaimynų krašto išlaidų sumą. Tada atnaujiname kintamąjį „Curr_bound“, apvalindami „New_bound“ į artimiausią sveikąjį skaičių.

Jei lygis yra 1, mes suapvaliname iki artimiausio sveikojo skaičiaus. Taip yra todėl, kad iki šiol aplankėme tik vieną viršūnę ir norime būti konservatyvūs, įvertindami bendrą optimalaus sprendimo sąnaudas. Jei lygis yra didesnis nei 1, mes naudojame agresyvesnę apvalinimo strategiją, kurioje atsižvelgiama į tai, kad mes jau apsilankėme kai kuriose viršūnėse, todėl galime tiksliai įvertinti bendrą optimalaus sprendimo sąnaudas.


Laiko sudėtingumas: Blogiausias filialo ir surišto atvejo sudėtingumas išlieka toks pat kaip ir žiaurios jėgos, nes blogiausiu atveju mes niekada negalime gauti progos genėti mazgą. Kadangi praktiškai jis veikia labai gerai, atsižvelgiant į skirtingą TSP pavyzdį. Sudėtingumas taip pat priklauso nuo ribojančios funkcijos pasirinkimo, nes jie nusprendžia, kiek mazgų reikia genėti.
Nuorodos:  
http://lcm.csa.iisc.ernet.in/dsa/node187.html