logo

Kaip sugeneruoti atsitiktinį skaičių nuo 1 iki 10 C++

Atsitiktinių skaičių generavimas yra įprastas daugelio programavimo programų reikalavimas, o C++ suteikia keletą būdų, kaip generuoti atsitiktinius skaičius tam tikrame diapazone. Šiame straipsnyje mes išnagrinėsime įvairius būdus, kaip generuoti atsitiktinius skaičius nuo 1 iki 10 C++.

1 būdas:

Naudojant rand() funkciją:

Vienas iš paprasčiausių būdų sugeneruoti atsitiktinį skaičių nuo 1 iki 10 C++ kalboje yra rand () funkcija. Ši funkcija apibrėžta antraštės failą ir sugeneruoja atsitiktinį sveikąjį skaičių diapazone 0 į RAND_MAX . Vertė RAND_MAX priklauso nuo diegimo ir gali skirtis priklausomai nuo kompiliatoriaus.

Pavyzdys:

Paimkime pavyzdį, kaip sugeneruoti atsitiktinį skaičių nuo 1 iki 10 naudojant rand() funkciją, galime naudoti šį kodą:

 #include #include #include using namespace std; int main() { srand(time(0)); cout&lt;&lt; &apos;Random number between 1 and 10 is: &apos;&lt;<endl; for(int i="0;i&lt;10;i++)" cout << (rand() % 10) + 1<<' '; return 0; } < pre> <p> <strong>Output</strong> </p> <pre> Random number between 1 and 10 is: 4 5 7 10 7 5 1 7 10 2 </pre> <p>In this code, we have included the <strong> <em></em> </strong> and <strong> <em></em> </strong> header files. The <strong> <em>srand()</em> </strong> function is used to initialize the random number generator with the current time as the seed. It ensures that every time the program is run, a new sequence of random numbers is generated.</p> <p>The <strong> <em>rand()</em> </strong> function is used to generate a random integer between 0 and <strong> <em>RAND_MAX</em> </strong> . To limit the range between 1 and 10, we take the remainder of this number when divided by 10 and add 1 to it.</p> <h3>Method 2:</h3> <p> <strong>Using C++11 random library</strong> </p> <p>The <strong> <em>C++11</em> </strong> standard introduced a new library called <strong> <em></em> </strong> that provides a better way to generate random numbers. This library provides several random number generation engines and distributions that can generate random numbers with a uniform distribution.</p> <p> <strong>Example:</strong> </p> <p>Let&apos;s take an example to generate a random number between 1 and 10 using the <strong> <em></em> </strong> library, we can use the following code:</p> <pre> #include #include using namespace std; int main() { random_device rand; mt19937 gen(rand()); uniform_int_distributiondis(1, 10); int random_number = dis(gen); cout&lt;&lt; &apos;Random number between 1 and 10 is: &apos; &lt;<random_number<<endl; return 0; } < pre> <p>In this code, we have included the <strong> <em></em> </strong> header file. The <strong> <em>random_device</em> </strong> class is used to obtain a seed value for the random number generator. The <strong> <em>mt19937</em> </strong> class is a random number generation engine that produces random numbers with a uniform distribution. The <strong> <em>uniform_int_distribution</em> </strong> class is used to generate random integers within a given range.</p> <p>By default, the <strong> <em>mt19937</em> </strong> engine uses a seed value of <strong> <em>5489</em> </strong> , which can be changed using the <strong> <em>seed()</em> </strong> method. However, it is recommended to use a <strong> <em>random_device</em> </strong> to obtain a seed value for better randomness.</p> <p>The <strong> <em>uniform_int_distribution</em> </strong> class generates random integers with a uniform distribution within a given range. In this code, we have specified the range as <strong> <em>1</em> </strong> to <strong> <em>10</em> </strong> using the constructor.</p> <p>This method provides better randomness and a uniform distribution of generated numbers compared to the <strong> <em>rand()</em> </strong> function. However, it is slower and more complex to implement.</p> <h3>Method 3:</h3> <p> <strong>Using modulo operator with time():</strong> </p> <p>Another method to generate a random number between 1 and 10 is the <strong> <em>modulo operator</em> </strong> with the current time as a seed value. This method is similar to the first method using <strong> <em>rand()</em> </strong> function, but it uses a more random seed value and provides better randomness.</p> <p> <strong>Example:</strong> </p> <p>Let&apos;s take an example to generate a random number between 1 and 10 using the modulo operator with <strong> <em>time()</em> </strong> , we can use the following code:</p> <pre> #include #include using namespace std; int main() { srand(time(0)); cout&lt;&lt; &apos;Random number between 1 and 10 is: &apos; &lt;<endl; for(int i="0;i&lt;10;i++)" cout << (rand() % 10) + 1<<' '; return 0; } < pre> <p> <strong>Output</strong> </p> <pre> Random number between 1 and 10 is: 6 6 3 6 10 10 1 7 6 4 </pre> <p>In this code, we have used the <strong> <em>time()</em> </strong> function to obtain the current time as a seed value for the <strong> <em>srand()</em> </strong> function. The <strong> <em>srand()</em> </strong> function is used to initialize the random number generator. The <strong> <em>rand()</em> </strong> function generates a random integer between 0 and <strong> <em>RAND_MAX</em> </strong> , which is then limited to a range between 1 and 10 using the <strong> <em>modulo operator</em> </strong> and adding 1 to it.</p> <h2>Conclusion:</h2> <p>In conclusion, there are several methods to generate random numbers between 1 and 10 in C++. The choice of method depends on the requirements of the application, such as <strong> <em>speed, randomness</em> </strong> , and <strong> <em>uniformity</em> </strong> of generated numbers. While the <strong> <em>rand()</em> </strong> function is the simplest and easiest to implement, it may not provide good randomness and uniformity. The <strong> <em></em> </strong> library provides a better way to generate random numbers with a uniform distribution, but it is slower and more complex to implement. The <strong> <em>XORShift</em> </strong> algorithm provides good <strong> <em>randomness</em> </strong> and <strong> <em>uniformity</em> </strong> , but it is more complex to implement and may not be as fast as the <strong> <em>rand()</em> </strong> function.</p> <hr></endl;></pre></random_number<<endl;></pre></endl;>

Į šį kodą įtraukėme ir antraštės failus. The srand () Funkcija naudojama inicijuoti atsitiktinių skaičių generatorių, kai pradinis laikas yra dabartinis. Tai užtikrina, kad kiekvieną kartą paleidžiant programą būtų generuojama nauja atsitiktinių skaičių seka.

The rand () funkcija naudojama atsitiktiniam sveikajam skaičiui tarp 0 ir generuoti RAND_MAX . Norėdami apriboti diapazoną nuo 1 iki 10, imame likusią šio skaičiaus dalį, padalytą iš 10, ir pridedame 1.

2 būdas:

Naudojant C++11 atsitiktinę biblioteką

The C++11 standartas pristatė naują biblioteką, pavadintą kuris suteikia geresnį būdą generuoti atsitiktinius skaičius. Šioje bibliotekoje yra keletas atsitiktinių skaičių generavimo variklių ir paskirstymų, kurie gali generuoti atsitiktinius skaičius su vienodu paskirstymu.

Pavyzdys:

Paimkime pavyzdį, kaip sugeneruoti atsitiktinį skaičių nuo 1 iki 10 naudojant biblioteką, galime naudoti šį kodą:

 #include #include using namespace std; int main() { random_device rand; mt19937 gen(rand()); uniform_int_distributiondis(1, 10); int random_number = dis(gen); cout&lt;&lt; &apos;Random number between 1 and 10 is: &apos; &lt;<random_number<<endl; return 0; } < pre> <p>In this code, we have included the <strong> <em></em> </strong> header file. The <strong> <em>random_device</em> </strong> class is used to obtain a seed value for the random number generator. The <strong> <em>mt19937</em> </strong> class is a random number generation engine that produces random numbers with a uniform distribution. The <strong> <em>uniform_int_distribution</em> </strong> class is used to generate random integers within a given range.</p> <p>By default, the <strong> <em>mt19937</em> </strong> engine uses a seed value of <strong> <em>5489</em> </strong> , which can be changed using the <strong> <em>seed()</em> </strong> method. However, it is recommended to use a <strong> <em>random_device</em> </strong> to obtain a seed value for better randomness.</p> <p>The <strong> <em>uniform_int_distribution</em> </strong> class generates random integers with a uniform distribution within a given range. In this code, we have specified the range as <strong> <em>1</em> </strong> to <strong> <em>10</em> </strong> using the constructor.</p> <p>This method provides better randomness and a uniform distribution of generated numbers compared to the <strong> <em>rand()</em> </strong> function. However, it is slower and more complex to implement.</p> <h3>Method 3:</h3> <p> <strong>Using modulo operator with time():</strong> </p> <p>Another method to generate a random number between 1 and 10 is the <strong> <em>modulo operator</em> </strong> with the current time as a seed value. This method is similar to the first method using <strong> <em>rand()</em> </strong> function, but it uses a more random seed value and provides better randomness.</p> <p> <strong>Example:</strong> </p> <p>Let&apos;s take an example to generate a random number between 1 and 10 using the modulo operator with <strong> <em>time()</em> </strong> , we can use the following code:</p> <pre> #include #include using namespace std; int main() { srand(time(0)); cout&lt;&lt; &apos;Random number between 1 and 10 is: &apos; &lt;<endl; for(int i="0;i&lt;10;i++)" cout << (rand() % 10) + 1<<\' \'; return 0; } < pre> <p> <strong>Output</strong> </p> <pre> Random number between 1 and 10 is: 6 6 3 6 10 10 1 7 6 4 </pre> <p>In this code, we have used the <strong> <em>time()</em> </strong> function to obtain the current time as a seed value for the <strong> <em>srand()</em> </strong> function. The <strong> <em>srand()</em> </strong> function is used to initialize the random number generator. The <strong> <em>rand()</em> </strong> function generates a random integer between 0 and <strong> <em>RAND_MAX</em> </strong> , which is then limited to a range between 1 and 10 using the <strong> <em>modulo operator</em> </strong> and adding 1 to it.</p> <h2>Conclusion:</h2> <p>In conclusion, there are several methods to generate random numbers between 1 and 10 in C++. The choice of method depends on the requirements of the application, such as <strong> <em>speed, randomness</em> </strong> , and <strong> <em>uniformity</em> </strong> of generated numbers. While the <strong> <em>rand()</em> </strong> function is the simplest and easiest to implement, it may not provide good randomness and uniformity. The <strong> <em></em> </strong> library provides a better way to generate random numbers with a uniform distribution, but it is slower and more complex to implement. The <strong> <em>XORShift</em> </strong> algorithm provides good <strong> <em>randomness</em> </strong> and <strong> <em>uniformity</em> </strong> , but it is more complex to implement and may not be as fast as the <strong> <em>rand()</em> </strong> function.</p> <hr></endl;></pre></random_number<<endl;>

Šiame kode mes panaudojome laikas() funkcija, kad gautumėte esamą laiką kaip pradinę reikšmę srand () funkcija. The srand () funkcija naudojama atsitiktinių skaičių generatoriui inicijuoti. The rand () funkcija generuoja atsitiktinį sveikąjį skaičių nuo 0 iki RAND_MAX , kuris tada apribojamas diapazonu nuo 1 iki 10 naudojant operatoriaus modulis ir pridedant prie jo 1.

Išvada:

Apibendrinant, yra keletas būdų, kaip generuoti atsitiktinius skaičius nuo 1 iki 10 C++. Metodo pasirinkimas priklauso nuo programos reikalavimų, pvz greitis, atsitiktinumas , ir vienodumas sugeneruotų skaičių. Kol rand () funkcija yra paprasčiausia ir lengviausiai įgyvendinama, ji gali nesuteikti gero atsitiktinumo ir vienodumo. The biblioteka suteikia geresnį būdą generuoti atsitiktinius skaičius su vienodu pasiskirstymu, tačiau jis yra lėtesnis ir sudėtingesnis. The XORShift algoritmas suteikia gerą atsitiktinumas ir vienodumas , tačiau tai sudėtingiau įgyvendinti ir gali būti ne taip greitai, kaip rand () funkcija.