logo

Raskite permutaciją, kuri sukelia blogiausią susijungimo atvejį

Atsižvelgiant į elementų rinkinį, kuris nustato, kuris šių elementų permutacija sukeltų blogiausiu atveju sujungimo rūšis.
Asimptotiškai susijungimo rūšis visada užtrunka (n log n), tačiau atvejai, kuriems reikia daugiau palyginimų, paprastai reikalauja daugiau laiko praktiškai. Iš esmės mums reikia rasti įvesties elementų permutaciją, dėl kurios rūšiuojant naudojant tipišką sujungimo rūšiavimo algoritmą, būtų pasiektas maksimalus palyginimų skaičius.

Pavyzdys:  



Consider the below set of elements   
{1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16}

Below permutation of the set causes 153
comparisons.
{1 9 5 13 3 11 7 15 2 10 6
14 4 12 8 16}

And an already sorted permutation causes
30 comparisons.

Dabar kaip gauti blogiausio atvejo įvesties įvesties įvesties įvesties rinkinį?

Leidžia mums pabandyti sukurti masyvą iš apačios į viršų
Tegul surūšiuotas masyvas yra {12345678}.

Norint sugeneruoti blogiausią sujungimo atvejį, rūšiuoti sujungimo operaciją, dėl kurios aukščiau išdėstytas masyvas turėtų būti maksimalus palyginimas. Norint tai padaryti, kairiajame ir dešiniajame poskyryje, dalyvaujančiame sujungimo operacijoje, turėtų būti išsaugoti alternatyvūs rūšiuoto masyvo elementai. y., kairiojo pobūdis turėtų būti {1357}, o dešiniojo poskyris turėtų būti {2468}. Dabar kiekvienas masyvo elementas bus lyginamas vieną kartą ir tai bus palyginami maksimaliai palyginimai. Tą pačią logiką taikome ir kairiajam ir dešiniajam poskyriui. Masyvas {1357} Blogiausias atvejis bus tada, kai jo kairėje ir dešinėje yra atitinkamai {15} ir {37}, o masyvui {2468}-blogiausias atvejis įvyks {24} ir {68}.



Visas algoritmas -
Generateworstcase (arr [])  

  1. Sukurkite du pagalbinius masyvus iš kairės ir dešinės ir saugokite alternatyvius masyvo elementus.
  2. „Call GenerateWorstcase“, skirtas kairiajam „Subarray“: „GenerateWorstCase“ (kairėje)
  3. „Call GenerateWorstcase“, skirtas dešiniajam subarracijai: generuoti „WorldCase“ (dešinėje)
  4. Nukopijuokite visus kairiojo ir dešiniojo poskyrio elementus atgal į originalų masyvą.

Žemiau yra idėjos įgyvendinimas

plonas algoritmas
C++
// C++ program to generate Worst Case // of Merge Sort #include    using namespace std; // Function to print an array void printArray(int A[] int size) {  for(int i = 0; i < size; i++)  {  cout << A[i] << ' ';  }  cout << endl; } // Function to join left and right subarray int join(int arr[] int left[] int right[]  int l int m int r) {  int i;  for(i = 0; i <= m - l; i++)  arr[i] = left[i];  for(int j = 0; j < r - m; j++)  {  arr[i + j] = right[j];  } } // Function to store alternate elements in // left and right subarray int split(int arr[] int left[] int right[]  int l int m int r) {  for(int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for(int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case  // of Merge Sort int generateWorstCase(int arr[] int l  int r) {  if (l < r)  {  int m = l + (r - l) / 2;  // Create two auxiliary arrays  int left[m - l + 1];  int right[r - m];  // Store alternate array elements   // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // Join left and right subarray  join(arr left right l m r);  } } // Driver code int main() {    // Sorted array  int arr[] = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };    int n = sizeof(arr) / sizeof(arr[0]);  cout << 'Sorted array is n';  printArray(arr n);  // Generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);  cout << 'nInput array that will result '  << 'in worst case of merge sort is n';    printArray(arr n);  return 0; } // This code is contributed by Mayank Tyagi 
C
// C program to generate Worst Case of Merge Sort  #include   #include   // Function to print an array  void printArray(int A[] int size)  {   for (int i = 0; i < size; i++)   printf('%d ' A[i]);   printf('n');  }  // Function to join left and right subarray  int join(int arr[] int left[] int right[]   int l int m int r)  {   int i; // Used in second loop   for (i = 0; i <= m - l; i++)   arr[i] = left[i];   for (int j = 0; j < r - m; j++)   arr[i + j] = right[j];  }  // Function to store alternate elements in left  // and right subarray  int split(int arr[] int left[] int right[]   int l int m int r)  {   for (int i = 0; i <= m - l; i++)   left[i] = arr[i * 2];   for (int i = 0; i < r - m; i++)   right[i] = arr[i * 2 + 1];  }  // Function to generate Worst Case of Merge Sort  int generateWorstCase(int arr[] int l int r)  {   if (l < r)   {   int m = l + (r - l) / 2;   // create two auxiliary arrays   int left[m - l + 1];   int right[r - m];   // Store alternate array elements in left   // and right subarray   split(arr left right l m r);   // Recurse first and second halves   generateWorstCase(left l m);   generateWorstCase(right m + 1 r);   // join left and right subarray   join(arr left right l m r);   }  }  // Driver code  int main()  {   // Sorted array   int arr[] = { 1 2 3 4 5 6 7 8 9   10 11 12 13 14 15 16 };   int n = sizeof(arr) / sizeof(arr[0]);   printf('Sorted array is n');   printArray(arr n);   // generate Worst Case of Merge Sort   generateWorstCase(arr 0 n - 1);   printf('nInput array that will result in '  'worst case of merge sort is n');   printArray(arr n);   return 0;  }  
Java
// Java program to generate Worst Case of Merge Sort import java.util.Arrays; class GFG  {  // Function to join left and right subarray  static void join(int arr[] int left[] int right[]  int l int m int r)  {  int i;  for (i = 0; i <= m - l; i++)  arr[i] = left[i];    for (int j = 0; j < r - m; j++)  arr[i + j] = right[j];  }    // Function to store alternate elements in left  // and right subarray  static void split(int arr[] int left[] int right[]  int l int m int r)  {  for (int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];    for (int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }    // Function to generate Worst Case of Merge Sort  static void generateWorstCase(int arr[] int l int r)  {  if (l < r)  {  int m = l + (r - l) / 2;    // create two auxiliary arrays  int[] left = new int[m - l + 1];  int[] right = new int[r - m];    // Store alternate array elements in left  // and right subarray  split(arr left right l m r);    // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);    // join left and right subarray  join(arr left right l m r);  }  }    // driver program  public static void main (String[] args)   {  // sorted array  int arr[] = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };  int n = arr.length;  System.out.println('Sorted array is');  System.out.println(Arrays.toString(arr));    // generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);    System.out.println('nInput array that will result in n'+  'worst case of merge sort is n');    System.out.println(Arrays.toString(arr));  } } // Contributed by Pramod Kumar 
Python
# Python program to generate Worst Case of Merge Sort # Function to join left and right subarray def join(arr left right l m r): i = 0; for i in range(m-l+1): arr[i] = left[i]; i+=1; for j in range(r-m): arr[i + j] = right[j]; # Function to store alternate elements in left # and right subarray def split(arr left right l m r): for i in range(m-l+1): left[i] = arr[i * 2]; for i in range(r-m): right[i] = arr[i * 2 + 1]; # Function to generate Worst Case of Merge Sort def generateWorstCase(arr l r): if (l < r): m = l + (r - l) // 2; # create two auxiliary arrays left = [0 for i in range(m - l + 1)]; right = [0 for i in range(r-m)]; # Store alternate array elements in left # and right subarray split(arr left right l m r); # Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); # join left and right subarray join(arr left right l m r); # driver program if __name__ == '__main__': # sorted array arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]; n = len(arr); print('Sorted array is'); print(arr); # generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); print('nInput array that will result in n' + 'worst case of merge sort is '); print(arr); # This code contributed by shikhasingrajput  
C#
// C# program to generate Worst Case of // Merge Sort using System; class GFG {    // Function to join left and right subarray  static void join(int []arr int []left   int []right int l int m int r)  {  int i;  for (i = 0; i <= m - l; i++)  arr[i] = left[i];  for (int j = 0; j < r - m; j++)  arr[i + j] = right[j];  }  // Function to store alternate elements in  // left and right subarray  static void split(int []arr int []left  int []right int l int m int r)  {  for (int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for (int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }    // Function to generate Worst Case of   // Merge Sort  static void generateWorstCase(int []arr   int l int r)  {  if (l < r)  {  int m = l + (r - l) / 2;  // create two auxiliary arrays  int[] left = new int[m - l + 1];  int[] right = new int[r - m];  // Store alternate array elements  // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // join left and right subarray  join(arr left right l m r);  }  }    // driver program  public static void Main ()   {    // sorted array  int []arr = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };    int n = arr.Length;  Console.Write('Sorted array isn');    for(int i = 0; i < n; i++)  Console.Write(arr[i] + ' ');    // generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);  Console.Write('nInput array that will '  + 'result in n worst case of'  + ' merge sort is n');    for(int i = 0; i < n; i++)  Console.Write(arr[i] + ' ');  } } // This code is contributed by Smitha  
JavaScript
<script>  // javascript program to generate Worst Case  // of Merge Sort  // Function to print an array  function printArray(Asize)  {  for(let i = 0; i < size; i++)  {  document.write(A[i] + ' ');  }  }  // Function to join left and right subarray  function join(arrleftrightlmr)  {  let i;  for(i = 0; i <= m - l; i++)  arr[i] = left[i];  for(let j = 0; j < r - m; j++)  {  arr[i + j] = right[j];  }  }  // Function to store alternate elements in  // left and right subarray  function split(arrleftrightlmr)  {  for(let i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for(let i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }  // Function to generate Worst Case  // of Merge Sort  function generateWorstCase(arrlr)  {  if (l < r)  {  let m = l + parseInt((r - l) / 2 10);  // Create two auxiliary arrays  let left = new Array(m - l + 1);  let right = new Array(r - m);  left.fill(0);  right.fill(0);  // Store alternate array elements  // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // Join left and right subarray  join(arr left right l m r);  }  }    let arr = [1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 ];   let n = arr.length;  document.write('Sorted array is' + '
'
); printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); document.write('
'
+ 'Input array that will result ' + 'in worst case of merge sort is' + '
'
); printArray(arr n); // This code is contributed by vaibhavrabadiya117. </script>

Išvestis: 



Sorted array is   
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input array that will result in worst
case of merge sort is
1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16

Laiko sudėtingumas: o (n logn)
Pagalbinė erdvė: o (n)
Nuorodos - Krūvos perpildymas