logo

Normalus pasiskirstymas R

Normalus skirstinys yra statistikoje naudojama tikimybių funkcija, nurodanti, kaip paskirstomos duomenų reikšmės. Tai pati svarbiausia tikimybių pasiskirstymo funkcija, naudojama statistikoje dėl jos pranašumų realių atvejų scenarijuose. Pavyzdžiui, gyventojų ūgis, batų dydis, IQ lygis, kauliuko metimas ir daugelis kitų. Paprastai pastebima, kad duomenų pasiskirstymas yra normalus, kai atsitiktinai renkami duomenys iš nepriklausomų šaltinių. Grafikas, sudarytas nubraižius kintamojo reikšmę x ašyje ir reikšmės skaičių y ašyje, yra varpo formos kreivės grafikas. Grafikas reiškia, kad piko taškas yra duomenų rinkinio vidurkis, o pusė duomenų rinkinio reikšmių yra kairėje vidurkio pusėje, o kita pusė yra dešinėje vidurkio dalyje, nurodančioje reikšmių pasiskirstymą. Grafikas yra simetriškas skirstinys. R yra 4 integruotos funkcijos normaliam paskirstymui generuoti:
    dnorm()
    dnorm(x, mean, sd)>
    pnorm()
    pnorm(x, mean, sd)>
    qnorm()
    qnorm(p, mean, sd)>
    rnorm()
    rnorm(n, mean, sd)>
kur,
x reiškia reikšmių duomenų rinkinį – vidurkis (x) reiškia duomenų rinkinio vidurkį x . Numatytoji reikšmė yra 0.
>
sd(x) reiškia standartinį duomenų rinkinio nuokrypį x . Numatytoji vertė yra 1.
>
n yra stebėjimų skaičius. – p yra tikimybių vektorius

Funkcijos, skirtos normaliam pasiskirstymui generuoti R

dnorm()

dnorm()> funkcija R programavime matuoja pasiskirstymo tankio funkciją. Statistikoje jis matuojamas pagal žemiau esančią formulę:
>
kur, yra menkas ir yra standartinis nuokrypis. Sintaksė:
dnorm(x, mean, sd)>
Pavyzdys:
# creating a sequence of values> # between -15 to 15 with a difference of 0.1> x>=> seq(>->15>,>15>, by>=>0.1>)> > y>=> dnorm(x, mean(x), sd(x))> > # output to be present as PNG file> png(>file>=>'dnormExample.webp'>)> > # Plot the graph.> plot(x, y)> > # saving the file> dev.off()>
>
>
Išvestis:

pnorm()

pnorm()> funkcija yra kaupiamoji pasiskirstymo funkcija, kuri matuoja tikimybę, kad atsitiktinis skaičius X įgis reikšmę, mažesnę arba lygią x, t. y. statistikoje jis pateikiamas
>
Sintaksė:
pnorm(x, mean, sd)>
Pavyzdys:
# creating a sequence of values> # between -10 to 10 with a difference of 0.1> x <>-> seq(>->10>,>10>, by>=>0.1>)> > y <>-> pnorm(x, mean>=> 2.5>, sd>=> 2>)> > # output to be present as PNG file> png(>file>=>'pnormExample.webp'>)> > # Plot the graph.> plot(x, y)> > # saving the file> dev.off()>
>
>
Išvestis:

qnorm()

qnorm()> funkcija yra atvirkštinė pnorm()>funkcija. Jis paima tikimybės vertę ir pateikia išvestį, atitinkančią tikimybės vertę. Tai naudinga ieškant normalaus skirstinio procentilių. Sintaksė:
qnorm(p, mean, sd)>
Pavyzdys:
# Create a sequence of probability values> # incrementing by 0.02.> x <>-> seq(>0>,>1>, by>=> 0.02>)> > y <>-> qnorm(x, mean(x), sd(x))> > # output to be present as PNG file> png(>file> => 'qnormExample.webp'>)> > # Plot the graph.> plot(x, y)> > # Save the file.> dev.off()>
>
>
Išvestis:

rnorm()

rnorm()> R programavimo funkcija naudojama atsitiktinių skaičių, kurie paprastai paskirstomi, vektoriui generuoti. Sintaksė:
rnorm(x, mean, sd)>
Pavyzdys:
# Create a vector of 1000 random numbers> # with mean=90 and sd=5> x <>-> rnorm(>10000>, mean>=>90>, sd>=>5>)> > # output to be present as PNG file> png(>file> => 'rnormExample.webp'>)> > # Create the histogram with 50 bars> hist(x, breaks>=>50>)> > # Save the file.> dev.off()>
>
>
Išvestis: