logo

Perkelkite svorio skalę pakaitomis pagal nurodytus apribojimus

Pateikta svorių skalė ir įvairių teigiamų svorių masyvas, kur turime begalinį kiekvieno svorio kiekį. Mūsų užduotis yra dėti svarmenis ant kairiosios ir dešiniosios svarstyklių lėkštės po vieną taip, kad keptuvės judėtų į tą pusę, kur dedamas svoris, t. y. kiekvieną kartą, kai svarstyklės pasislenka į kitas puses.

  • Mums duotas dar vienas sveikųjų skaičių „žingsnių“ laikas, kurio mums reikia šiai operacijai atlikti.
  • Kitas apribojimas yra tas, kad negalime dėti to paties svorio iš eilės, t. y. jei paimtas svoris w, tada kitame žingsnyje, dedant svorį ant priešingos keptuvės, mes negalime vėl imti w.

Pavyzdžiai:

Let weight array is [7 11] and steps = 3 then 7 11 7 is the sequence in which weights should be kept in order to move scale alternatively. Let another weight array is [2 3 5 6] and steps = 10 then 3 2 3 5 6 5 3 2 3 is the sequence in which weights should be kept in order to move scale alternatively.

Šią problemą galima išspręsti darant DFS tarp masto būsenų.



  1. Norėdami rasti sprendimą, pereiname tarp įvairių DFS būsenų, kur kiekviena DFS būsena atitiks tikrąją kairiojo ir dešiniojo stulpelių skirtumo vertę ir dabartinį žingsnių skaičių.
  2. Užuot saugoję abiejų keptuvių svorius, mes tiesiog išsaugome skirtumo likutinę vertę ir kiekvieną kartą pasirinkta svorio vertė turi būti didesnė už šį skirtumą ir neturėtų būti lygi anksčiau pasirinktai svorio vertei.
  3. Jei taip, tada DFS metodą iškviečiame rekursyviai su nauja skirtumo reikšme ir dar vienu žingsniu.

Norėdami geriau suprasti, žiūrėkite žemiau esantį kodą 

C++
// C++ program to print weights for alternating // the weighting scale #include    using namespace std; // DFS method to traverse among states of weighting scales bool dfs(int residue int curStep int wt[] int arr[]  int N int steps) {  // If we reach to more than required steps  // return true  if (curStep > steps)  return true;  // Try all possible weights and choose one which  // returns 1 afterwards  for (int i = 0; i < N; i++)  {  /* Try this weight only if it is greater than  current residueand not same as previous chosen  weight */  if (arr[i] > residue && arr[i] != wt[curStep - 1])  {  // assign this weight to array and recur for  // next state  wt[curStep] = arr[i];  if (dfs(arr[i] - residue curStep + 1 wt  arr N steps))  return true;  }  }  // if any weight is not possible return false  return false; } // method prints weights for alternating scale and if // not possible prints 'not possible' void printWeightsOnScale(int arr[] int N int steps) {  int wt[steps];  // call dfs with current residue as 0 and current  // steps as 0  if (dfs(0 0 wt arr N steps))  {  for (int i = 0; i < steps; i++)  cout << wt[i] << ' ';  cout << endl;  }  else  cout << 'Not possiblen'; } // Driver code to test above methods int main() {  int arr[] = {2 3 5 6};  int N = sizeof(arr) / sizeof(int);  int steps = 10;  printWeightsOnScale(arr N steps);  return 0; } 
Java
// Java program to print weights for alternating  // the weighting scale class GFG  {  // DFS method to traverse among   // states of weighting scales  static boolean dfs(int residue int curStep   int[] wt int[] arr  int N int steps)   {  // If we reach to more than required steps  // return true  if (curStep >= steps)  return true;  // Try all possible weights and   // choose one which returns 1 afterwards  for (int i = 0; i < N; i++)   {  /*  * Try this weight only if it is   * greater than current residue   * and not same as previous chosen weight  */  if (curStep - 1 < 0 ||   (arr[i] > residue &&  arr[i] != wt[curStep - 1]))  {  // assign this weight to array and   // recur for next state  wt[curStep] = arr[i];  if (dfs(arr[i] - residue curStep + 1  wt arr N steps))  return true;  }  }  // if any weight is not possible  // return false  return false;  }  // method prints weights for alternating scale   // and if not possible prints 'not possible'  static void printWeightOnScale(int[] arr   int N int steps)   {  int[] wt = new int[steps];  // call dfs with current residue as 0   // and current steps as 0  if (dfs(0 0 wt arr N steps))   {  for (int i = 0; i < steps; i++)  System.out.print(wt[i] + ' ');  System.out.println();  }   else  System.out.println('Not Possible');  }  // Driver Code  public static void main(String[] args)  {  int[] arr = { 2 3 5 6 };  int N = arr.length;  int steps = 10;  printWeightOnScale(arr N steps);  } } // This code is contributed by // sanjeev2552 
Python3
# Python3 program to print weights for  # alternating the weighting scale  # DFS method to traverse among states  # of weighting scales  def dfs(residue curStep wt arr N steps): # If we reach to more than required  # steps return true  if (curStep >= steps): return True # Try all possible weights and choose  # one which returns 1 afterwards for i in range(N): # Try this weight only if it is greater  # than current residueand not same as  # previous chosen weight  if (arr[i] > residue and arr[i] != wt[curStep - 1]): # assign this weight to array and  # recur for next state  wt[curStep] = arr[i] if (dfs(arr[i] - residue curStep + 1 wt arr N steps)): return True # if any weight is not possible # return false  return False # method prints weights for alternating scale  # and if not possible prints 'not possible'  def printWeightsOnScale(arr N steps): wt = [0] * (steps) # call dfs with current residue as 0  # and current steps as 0  if (dfs(0 0 wt arr N steps)): for i in range(steps): print(wt[i] end = ' ') else: print('Not possible') # Driver Code if __name__ == '__main__': arr = [2 3 5 6] N = len(arr) steps = 10 printWeightsOnScale(arr N steps) # This code is contributed by PranchalK 
C#
// C# program to print weights for alternating  // the weighting scale using System; namespace GFG {  class Program  {  // DFS method to traverse among states of weighting scales  static bool dfs(int residue int curStep   int[] wt int[] arr  int N int steps)   {  // If we reach to more than required steps return true  if (curStep >= steps)  return true;  // Try all possible weights and choose one which returns 1 afterwards  for (int i = 0; i < N; i++)   {  /*  * Try this weight only if it is greater than current residue   * and not same as previous chosen weight  */  if (curStep - 1 < 0 || (arr[i] > residue && arr[i] != wt[curStep - 1]))  {  // assign this weight to array and recur for next state  wt[curStep] = arr[i];  if (dfs(arr[i] - residue curStep + 1 wt arr N steps))  return true;  }  }  // if any weight is not possible return false  return false;  }  // method prints weights for alternating scale and   // if not possible prints 'not possible'  static void printWeightOnScale(int[] arr int N int steps)   {  int[] wt = new int[steps];  // call dfs with current residue as 0 and current steps as 0  if (dfs(0 0 wt arr N steps))   {  for (int i = 0; i < steps; i++)  Console.Write(wt[i] + ' ');  Console.WriteLine();  }   else  Console.WriteLine('Not Possible');  }  static void Main(string[] args)  {  int[] arr = { 2 3 5 6 };  int N = arr.Length;  int steps = 10;  printWeightOnScale(arr N steps);  }  } } 
JavaScript
function dfs(residue curStep wt arr N steps) {  // If we reach to more than required steps  // return true  if (curStep > steps) {  return true;  }  // Try all possible weights and choose one which  // returns 1 afterwards  for (let i = 0; i < N; i++)   {    /* Try this weight only if it is greater than  current residue and not same as previous chosen  weight */  if (arr[i] > residue && arr[i] !== wt[curStep - 1])  {    // assign this weight to array and recur for  // next state  wt[curStep] = arr[i];  if (dfs(arr[i] - residue curStep + 1 wt arr N steps)) {  return true;  }  }  }  // if any weight is not possible return false  return false; } function printWeightsOnScale(arr N steps) {  const wt = new Array(steps);  // call dfs with current residue as 0 and current  // steps as 0  if (dfs(0 1 wt arr N steps)) {  for (let i = 1; i <= steps; i++) {  process.stdout.write(`${wt[i]} `);  }  console.log();  } else {  console.log('Not possible');  } } const arr = [2 3 5 6]; const N = arr.length; const steps = 10; printWeightsOnScale(arr N steps); // This code is contributed by divyansh2212 

Išvestis:

2 3 2 3 5 6 5 3 2 3

 

Sukurti viktoriną