logo

Raskite didžiausią tam tikro dvejetainio medžio gylį arba aukštį

Pateiktas dvejetainis medis, užduotis yra rasti medžio aukštį. Medžio aukštis yra medžio viršūnių skaičius nuo šaknies iki giliausio mazgo.

Pastaba: Tuščio medžio aukštis yra 0 o medžio su vienu mazgu aukštis yra 1 .



Dvejetainio medžio pavyzdys

Dvejetainio medžio pavyzdys

Rekomenduojamas dvejetainio medžio aukštis Išbandykite!

Rekursyviai apskaičiuokite aukštį paliko ir teisingai mazgo pomedžiai ir priskirkite mazgo aukštį kaip maksimalus dviejų vaikų ūgis plius 1 . Daugiau informacijos rasite pseudo kodą ir programą.

Iliustracija:



Apsvarstykite šį medį:

Medžio pavyzdys

Medžio pavyzdys

maksimalus gylis('1') = max(maksimalus gylis('2'), maksimalus gylis('3')) + 1 = 2 + 1



nes rekursyviai
maxDepth('2') = max (maksimalus gylis('4'), maxDepth('5')) + 1 = 1 + 1 ir (kadangi ir '4', ir '5' aukštis yra 1)
maxDepth('3') = 1

Norėdami įgyvendinti idėją, atlikite šiuos veiksmus:

  • Rekursyviai atlikite paiešką pagal gylį.
  • Jei medis tuščias, grąžinkite 0
  • Kitu atveju atlikite šiuos veiksmus
    • Gaukite maksimalų kairiojo pomedžio gylį rekursyviai, t. y. iškvieskite maxDepth(medis->left-subtree)
    • Rekursyviai gaukite maksimalų dešiniojo pomedžio gylį, t. y. iškvieskite maxDepth (medis->dešinėlis-submedis)
    • Gaukite maksimalų maksimalų gylį paliko ir teisingai pomedžiai ir pridėti 1 į jį dabartiniam mazgui.
      • max_gylis = max(maksimalus kairiojo pomedžio gylis, maksimalus dešiniojo pomedžio gylis) + 1
  • Grąžinimo maks._gylis.

Toliau pateikiamas pirmiau minėto metodo įgyvendinimas:

C++

// C++ program to find height of tree> #include> using> namespace> std;> /* A binary tree node has data, pointer to left child> and a pointer to right child */> class> node {> public>:> >int> data;> >node* left;> >node* right;> };> /* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> int> maxDepth(node* node)> {> >if> (node == NULL)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node->kairėje);> >int> rDepth = maxDepth(node->dešinėje);> >/* use the larger one */> >if> (lDepth>rGylis)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> }> /* Helper function that allocates a new node with the> given data and NULL left and right pointers. */> node* newNode(>int> data)> {> >node* Node =>new> node();> >Node->duomenys = duomenys;> >Node->left = NULL;> >Node->dešinė = NULL;> >return> (Node);> }> // Driver code> int> main()> {> >node* root = newNode(1);> >root->left = newNode(2);> >root->dešinė = newMagas(3);> >root->left->left = naujasMazgas(4);> >root->kairė->dešinė = naujasMazgas(5);> >cout <<>'Height of tree is '> << maxDepth(root);> >return> 0;> }> // This code is contributed by Amit Srivastav>
>
>

C

#include> #include> /* A binary tree node has data, pointer to left child> >and a pointer to right child */> struct> node {> >int> data;> >struct> node* left;> >struct> node* right;> };> /* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> int> maxDepth(>struct> node* node)> {> >if> (node == NULL)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node->kairėje);> >int> rDepth = maxDepth(node->dešinėje);> >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> }> /* Helper function that allocates a new node with the> >given data and NULL left and right pointers. */> struct> node* newNode(>int> data)> {> >struct> node* node> >= (>struct> node*)>malloc>(>sizeof>(>struct> node));> >node->duomenys = duomenys;> >node->left = NULL;> >node->dešinė = NULL;> >return> (node);> }> int> main()> {> >struct> node* root = newNode(1);> >root->left = newNode(2);> >root->dešinė = newMagas(3);> >root->left->left = naujasMazgas(4);> >root->kairė->dešinė = naujasMazgas(5);> >printf>(>'Height of tree is %d'>, maxDepth(root));> >getchar>();> >return> 0;> }>
>
>

Java

// Java program to find height of tree> // A binary tree node> class> Node {> >int> data;> >Node left, right;> >Node(>int> item)> >{> >data = item;> >left = right =>null>;> >}> }> class> BinaryTree {> >Node root;> >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >int> maxDepth(Node node)> >{> >if> (node ==>null>)> >return> 0>;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node.left);> >int> rDepth = maxDepth(node.right);> >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth +>1>);> >else> >return> (rDepth +>1>);> >}> >}> >/* Driver program to test above functions */> >public> static> void> main(String[] args)> >{> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(>1>);> >tree.root.left =>new> Node(>2>);> >tree.root.right =>new> Node(>3>);> >tree.root.left.left =>new> Node(>4>);> >tree.root.left.right =>new> Node(>5>);> >System.out.println(>'Height of tree is '> >+ tree.maxDepth(tree.root));> >}> }> // This code has been contributed by Amit Srivastav>
>
>

Python3

# Python3 program to find the maximum depth of tree> # A binary tree node> class> Node:> ># Constructor to create a new node> >def> __init__(>self>, data):> >self>.data>=> data> >self>.left>=> None> >self>.right>=> None> # Compute the 'maxDepth' of a tree -- the number of nodes> # along the longest path from the root node down to the> # farthest leaf node> def> maxDepth(node):> >if> node>is> None>:> >return> 0> >else>:> ># Compute the depth of each subtree> >lDepth>=> maxDepth(node.left)> >rDepth>=> maxDepth(node.right)> ># Use the larger one> >if> (lDepth>rDepth):> >return> lDepth>+>1> >else>:> >return> rDepth>+>1> # Driver program to test above function> root>=> Node(>1>)> root.left>=> Node(>2>)> root.right>=> Node(>3>)> root.left.left>=> Node(>4>)> root.left.right>=> Node(>5>)> print>(>'Height of tree is %d'> %> (maxDepth(root)))> # This code is contributed by Amit Srivastav>
>
>

C#

// C# program to find height of tree> using> System;> // A binary tree node> public> class> Node {> >public> int> data;> >public> Node left, right;> >public> Node(>int> item)> >{> >data = item;> >left = right =>null>;> >}> }> public> class> BinaryTree {> >Node root;> >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >int> maxDepth(Node node)> >{> >if> (node ==>null>)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node.left);> >int> rDepth = maxDepth(node.right);> >/* use the larger one */> >if> (lDepth>rGylis)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> >}> >/* Driver code */> >public> static> void> Main(String[] args)> >{> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(1);> >tree.root.left =>new> Node(2);> >tree.root.right =>new> Node(3);> >tree.root.left.left =>new> Node(4);> >tree.root.left.right =>new> Node(5);> >Console.WriteLine(>'Height of tree is '> >+ tree.maxDepth(tree.root));> >}> }> // This code has been contributed by> // Correction done by Amit Srivastav>
>
>

Javascript

> // JavaScript program to find height of tree> // A binary tree node> class Node> {> >constructor(item)> >{> >this>.data=item;> >this>.left=>this>.right=>null>;> >}> }> >let root;> > >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >function> maxDepth(node)> >{> >if> (node ==>null>)> >return> 0;> >else> >{> >/* compute the depth of each subtree */> >let lDepth = maxDepth(node.left);> >let rDepth = maxDepth(node.right);> > >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> >}> > >/* Driver program to test above functions */> > >root =>new> Node(1);> >root.left =>new> Node(2);> >root.right =>new> Node(3);> >root.left.left =>new> Node(4);> >root.left.right =>new> Node(5);> > >document.write(>'Height of tree is : '> +> >maxDepth(root));> // This code is contributed by rag2127> //Correction done by Amit Srivastav> >
>
>

Išvestis
Height of tree is 3>

Laiko sudėtingumas: O (N) (Žiūrėkite įrašą Medžių perėjimas dėl informacijos)
Pagalbinė erdvė: O(N) dėl rekursinio krūvos.

Raskite maksimalų medžio gylį arba aukštį naudodami Lygio tvarka :

Daryk Lygio tvarka , pridedant mazgus kiekviename lygyje Norėdami įgyvendinti idėją, atlikite šiuos veiksmus:

  • Pereikite medį lygia tvarka, pradedant nuo šaknis .
    • Inicijuoti tuščią eilę K , kintamasis gylis ir stumti šaknis , tada stumkite nulinis į K .
    • Truputį paleiskite kilpą, kol K nėra tuščias.
      • Laikykite priekinį elementą K ir iškelkite priekinį elementą.
      • Jei priekinė dalis K yra NULL tada padidinkite gylis po vieną ir jei eilė nėra tuščia, tada stumkite NULL į K .
      • Kitu atveju, jei elemento nėra NULL tada patikrinkite, ar jis yra paliko ir teisingai vaikai, o jei jų nėra NULL stumti juos į K .
  • Grįžti gylis .

Toliau pateikiamas pirmiau minėto metodo įgyvendinimas:

C++

#include> #include> using> namespace> std;> // A Tree node> struct> Node {> >int> key;> >struct> Node *left, *right;> };> // Utility function to create a new node> Node* newNode(>int> key)> {> >Node* temp =>new> Node;> >temp->raktas = raktas;> >temp->kairėje = ​​temp->right = NULL;> >return> (temp);> }> /*Function to find the height(depth) of the tree*/> int> height(>struct> Node* root)> {> >// Initialising a variable to count the> >// height of tree> >int> depth = 0;> >queue q;> >// Pushing first level element along with NULL> >q.push(root);> >q.push(NULL);> >while> (!q.empty()) {> >Node* temp = q.front();> >q.pop();> >// When NULL encountered, increment the value> >if> (temp == NULL) {> >depth++;> >}> >// If NULL not encountered, keep moving> >if> (temp != NULL) {> >if> (temp->kairėje) {> >q.push(temp->kairėje);> >}> >if> (temp->dešinėje) {> >q.push(temp->dešinėje);> >}> >}> >// If queue still have elements left,> >// push NULL again to the queue.> >else> if> (!q.empty()) {> >q.push(NULL);> >}> >}> >return> depth;> }> // Driver program> int> main()> {> >// Let us create Binary Tree shown in above example> >Node* root = newNode(1);> >root->left = newNode(2);> >root->dešinė = newMagas(3);> >root->left->left = naujasMazgas(4);> >root->kairė->dešinė = naujasMazgas(5);> >cout <<>'Height(Depth) of tree is: '> << height(root);> }>
>
>

Java

// Java program for above approach> import> java.util.LinkedList;> import> java.util.Queue;> class> GFG {> >// A tree node structure> >static> class> Node {> >int> key;> >Node left;> >Node right;> >}> >// Utility function to create> >// a new node> >static> Node newNode(>int> key)> >{> >Node temp =>new> Node();> >temp.key = key;> >temp.left = temp.right =>null>;> >return> temp;> >}> >/*Function to find the height(depth) of the tree*/> >public> static> int> height(Node root)> >{> >// Initialising a variable to count the> >// height of tree> >int> depth =>0>;> >Queue q =>new> LinkedList();> >// Pushing first level element along with null> >q.add(root);> >q.add(>null>);> >while> (!q.isEmpty()) {> >Node temp = q.peek();> >q.remove();> >// When null encountered, increment the value> >if> (temp ==>null>) {> >depth++;> >}> >// If null not encountered, keep moving> >if> (temp !=>null>) {> >if> (temp.left !=>null>) {> >q.add(temp.left);> >}> >if> (temp.right !=>null>) {> >q.add(temp.right);> >}> >}> >// If queue still have elements left,> >// push null again to the queue.> >else> if> (!q.isEmpty()) {> >q.add(>null>);> >}> >}> >return> depth;> >}> >// Driver Code> >public> static> void> main(String args[])> >{> >Node root = newNode(>1>);> >root.left = newNode(>2>);> >root.right = newNode(>3>);> >root.left.left = newNode(>4>);> >root.left.right = newNode(>5>);> >System.out.println(>'Height(Depth) of tree is: '> >+ height(root));> >}> }> // This code is contributed by jana_sayantan.>
>
>

Python3

# Python code to implement the approach> # A Tree node> class> Node:> >def> __init__(>self>):> >self>.key>=> 0> >self>.left,>self>.right>=> None>,>None> # Utility function to create a new node> def> newNode(key):> >temp>=> Node()> >temp.key>=> key> >temp.left, temp.right>=> None>,>None> >return> temp> # Function to find the height(depth) of the tree> def> height(root):> ># Initialising a variable to count the> ># height of tree> >depth>=> 0> >q>=> []> ># appending first level element along with None> >q.append(root)> >q.append(>None>)> >while>(>len>(q)>>>):> >temp>=> q[>0>]> >q>=> q[>1>:]> ># When None encountered, increment the value> >if>(temp>=>=> None>):> >depth>+>=> 1> ># If None not encountered, keep moving> >if>(temp !>=> None>):> >if>(temp.left):> >q.append(temp.left)> >if>(temp.right):> >q.append(temp.right)> ># If queue still have elements left,> ># append None again to the queue.> >elif>(>len>(q)>>>):> >q.append(>None>)> >return> depth> # Driver program> # Let us create Binary Tree shown in above example> root>=> newNode(>1>)> root.left>=> newNode(>2>)> root.right>=> newNode(>3>)> root.left.left>=> newNode(>4>)> root.left.right>=> newNode(>5>)> print>(f>'Height(Depth) of tree is: {height(root)}'>)> # This code is contributed by shinjanpatra>
>
>

C#

// C# Program to find the Maximum Depth or Height of Binary Tree> using> System;> using> System.Collections.Generic;> // A Tree node> public> class> Node {> >public> int> data;> >public> Node left, right;> >public> Node(>int> item)> >{> >data = item;> >left =>null>;> >right =>null>;> >}> }> public> class> BinaryTree {> >Node root;> >// Function to find the height(depth) of the tree> >int> height()> >{> >// Initialising a variable to count the> >// height of tree> >int> depth = 0;> >Queue q =>new> Queue();> >// Pushing first level element along with NULL> >q.Enqueue(root);> >q.Enqueue(>null>);> >while> (q.Count != 0) {> >Node temp = q.Dequeue();> >// When NULL encountered, increment the value> >if> (temp ==>null>)> >depth++;> >// If NULL not encountered, keep moving> >if> (temp !=>null>) {> >if> (temp.left !=>null>) {> >q.Enqueue(temp.left);> >}> >if> (temp.right !=>null>) {> >q.Enqueue(temp.right);> >}> >}> >// If queue still have elements left,> >// push NULL again to the queue> >else> if> (q.Count != 0) {> >q.Enqueue(>null>);> >}> >}> >return> depth;> >}> >// Driver program> >public> static> void> Main()> >{> >// Let us create Binary Tree shown in above example> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(1);> >tree.root.left =>new> Node(2);> >tree.root.right =>new> Node(3);> >tree.root.left.left =>new> Node(4);> >tree.root.left.right =>new> Node(5);> >Console.WriteLine(>'Height(Depth) of tree is: '> >+ tree.height());> >}> }> // This code is contributed by Yash Agarwal(yashagarwal2852002)>
>
>

Javascript

> // JavaScript code to implement the approach> // A Tree node> class Node{> >constructor(){> >this>.key = 0> >this>.left =>null> >this>.right =>null> >}> }> // Utility function to create a new node> function> newNode(key){> >let temp =>new> Node()> >temp.key = key> >temp.left =>null> >temp.right =>null> >return> temp> }> // Function to find the height(depth) of the tree> function> height(root){> >// Initialising a variable to count the> >// height of tree> >let depth = 0> >let q = []> > >// pushing first level element along with null> >q.push(root)> >q.push(>null>)> >while>(q.length>0){> >let temp = q.shift()> > >// When null encountered, increment the value> >if>(temp ==>null>)> >depth += 1> > >// If null not encountered, keep moving> >if>(temp !=>null>){> >if>(temp.left)> >q.push(temp.left)> > >if>(temp.right)> >q.push(temp.right)> >}> > >// If queue still have elements left,> >// push null again to the queue.> >else> if>(q.length>0)> >q.push(>null>)> >}> >return> depth> }> // Driver program> // Let us create Binary Tree shown in above example> let root = newNode(1)> root.left = newNode(2)> root.right = newNode(3)> root.left.left = newNode(4)> root.left.right = newNode(5)> document.write(`Height(Depth) of tree is: ${height(root)}`,>''>)> // This code is contributed by shinjanpatra> >
>
>

Išvestis
Height(Depth) of tree is: 3>

Laiko sudėtingumas: O(N)
Pagalbinė erdvė: O(N)

Kitas būdas nustatyti aukštį naudojant Lygio tvarka :

Šis metodas taip pat naudoja Lygio užsakymo perėjimo koncepciją, bet mes į eilę neįtrauksime nulio. Tiesiog padidinkite skaitiklis lygiui padidėjus ir į eilę įstumkite dabartinio mazgo vaikus, tada pašalinkite visus mazgus iš dabartinio lygio eilės.

C++

// C++ program for above approach> #include> using> namespace> std;> // A Tree node> struct> Node {> >int> key;> >struct> Node *left, *right;> };> // Utility function to create a new node> Node* newNode(>int> key)> {> >Node* temp =>new> Node;> >temp->raktas = raktas;> >temp->kairėje = ​​temp->right = NULL;> >return> (temp);> }> /*Function to find the height(depth) of the tree*/> int> height(Node* root)> {> >// Initialising a variable to count the> >// height of tree> >queue q;> >q.push(root);> >int> height = 0;> >while> (!q.empty()) {> >int> size = q.size();> >for> (>int> i = 0; i Node* temp = q.front(); q.pop(); if (temp->left != NULL) { q.push(temp->left); } if (temp->right != NULL) { q.push(temp->right); } } aukštis++; } grąžinimo aukštis; } // Tvarkyklės programa int main() { // Sukurkime dvejetainį medį, parodytą aukščiau esančiame pavyzdyje Node* root = newNode(1); root->left = naujasMazgas(2); root->right = naujasMazgas(3); šaknis->kairė->kairė = naujasMazgas(4); šaknis->kairė->dešinė = newMagas(5); cout<< 'Height(Depth) of tree is: ' << height(root); } // This code is contributed by Abhijeet Kumar(abhijeet19403)>
>
>

Java

// Java program for above approach> import> java.util.LinkedList;> import> java.util.Queue;> class> GFG {> >// A tree node structure> >static> class> Node {> >int> key;> >Node left;> >Node right;> >}> >// Utility function to create> >// a new node> >static> Node newNode(>int> key)> >{> >Node temp =>new> Node();> >temp.key = key;> >temp.left = temp.right =>null>;> >return> temp;> >}> >/*Function to find the height(depth) of the tree*/> >public> static> int> height(Node root)> >{> >// Initialising a variable to count the> >// height of tree> >Queue q =>new> LinkedList();> >q.add(root);> >int> height =>0>;> >while> (!q.isEmpty()) {> >int> size = q.size();> >for> (>int> i =>0>; i Node temp = q.poll(); if (temp.left != null) { q.add(temp.left); } if (temp.right != null) { q.add(temp.right); } } height++; } return height; } // Driver Code public static void main(String args[]) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); System.out.println('Height(Depth) of tree is: ' + height(root)); } }>
>
>

Python3

# Python3 program to find the height of a tree> > # A binary tree node> class> Node:> > ># Constructor to create a new node> >def> __init__(>self>, data):> >self>.key>=> data> >self>.left>=> None> >self>.right>=> None> > # Function to find height of tree> def> height(root):> ># Base Case> >if> root>is> None>:> >return> 0> > ># Create an empty queue for level order traversal> >q>=> []> > ># Enqueue Root and initialize height> >q.append(root)> >height>=> 0> > ># Loop while queue is not empty> >while> q:> > ># nodeCount (queue size) indicates number of nodes> ># at current level> >nodeCount>=> len>(q)> > ># Dequeue all nodes of current level and Enqueue all> ># nodes of next level> >while> nodeCount>>>:> >node>=> q.pop(>0>)> >if> node.left>is> not> None>:> >q.append(node.left)> >if> node.right>is> not> None>:> >q.append(node.right)> >nodeCount>->=> 1> >height>+>=> 1> > >return> height> > # Driver Code> root>=> Node(>1>)> root.left>=> Node(>2>)> root.right>=> Node(>3>)> root.left.left>=> Node(>4>)> root.left.right>=> Node(>5>)> > print>(>'Height(Depth) of tree is'>, height(root))>
>
>

C#

using> System;> using> System.Collections.Generic;> class> GFG {> >// A Tree node> >class> Node {> >public> int> key;> >public> Node left, right;> >public> Node(>int> key)> >{> >this>.key=key;> >this>.left=>this>.right=>null>;> >}> >}> >// Utility function to create a new node> >/*Node newNode(int key)> >{> >Node* temp = new Node;> >temp.key = key;> >temp.left = temp.right = NULL;> >return (temp);> >}*/> >/*Function to find the height(depth) of the tree*/> >static> int> height(Node root)> >{> >// Initialising a variable to count the> >// height of tree> >Queue q=>new> Queue();> >q.Enqueue(root);> >int> height = 0;> >while> (q.Count>0) {> >int> size = q.Count;> >for> (>int> i = 0; i Node temp = q.Peek(); q.Dequeue(); if (temp.left != null) { q.Enqueue(temp.left); } if (temp.right != null) { q.Enqueue(temp.right); } } height++; } return height; } // Driver program public static void Main() { // Let us create Binary Tree shown in above example Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); Console.Write('Height(Depth) of tree is: ' + height(root)); } } // This code is contributed by poojaagarwal2.>
>
>

Javascript

// JavaScript program for above approach> // a tree node> class Node{> >constructor(key){> >this>.key = key;> >this>.left =>this>.right =>null>;> >}> }> // utility function to create a new node> function> newNode(key){> >return> new> Node(key);> }> // function to find the height of the tree> function> height(root){> >// initialising a variable to count the> >// height of tree> >let q = [];> >q.push(root);> >let height = 0;> >while>(q.length>0){> >let size = q.length;> >for>(let i = 0; i let temp = q.shift(); if(temp.left != null){ q.push(temp.left); } if(temp.right != null){ q.push(temp.right); } } height++; } return height; } // driver code let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); document.write('Height(Depth) of tree is: ' + height(root)); // this code is contributed by Kirti Agarwal(kirtiagarwal23121999)>
>
>

Išvestis
Height(Depth) of tree is: 3>

Laiko sudėtingumas: O(N)
Pagalbinė erdvė: O(N)