logo

Raskite, ar išraiška turi pasikartojančius skliaustus, ar ne

Atsižvelgiant į subalansuotą išraišką, suraskite, ar joje yra pasikartojančių skliaustų, ar ne. Skliaustų rinkinys pasikartoja, jei ta pati poraiška yra apsupta kelių skliaustų. 

Pavyzdžiai:  



    Below expressions have duplicate parenthesis -      
((a+b)+((c+d)))
The subexpression 'c+d' is surrounded by two
pairs of brackets.

(((a+(b)))+(c+d))
The subexpression 'a+(b)' is surrounded by two
pairs of brackets.

(((a+(b))+c+d))
The whole expression is surrounded by two
pairs of brackets.

((a+(b))+(c+d))
(b) and ((a+(b)) is surrounded by two
pairs of brackets but it will not be counted as duplicate.

Below expressions don't have any duplicate parenthesis -
((a+b)+(c+d))
No subexpression is surrounded by duplicate
brackets.

Galima daryti prielaidą, kad pateikta išraiška galioja ir jame nėra tarpų. 

Idėja yra naudoti krūvą. Pakartokite pateiktą išraišką ir kiekvieną išraiškos simbolį, jei simbolis yra atviras skliaustelis „(“ arba bet kuris iš operatorių ar operandų, stumkite jį į krūvos viršų. Jei simbolis yra uždaras skliaustelis „)“, tada iškelkite simbolius iš krūvos iki atitikimo atviram skliausčiui „(“ ir naudojamas skaitiklis, kurio reikšmė padidinama, kol randamas kiekvieno kaktinio simbolio reikšmė. simboliai, sutinkami tarp atidarymo ir uždarymo skliaustų pora, kuri lygi skaitiklio reikšmei, yra mažesnė nei 1, tada randama pasikartojančių skliaustų pora, kitu atveju perteklinių skliaustų porų nėra. Pavyzdžiui, (((a+b))+c) aplink „a+b“ yra pasikartojantys skliaustai. Kai aptinkamas antrasis ')' po a+b, krūvoje yra '(('. Kadangi krūvos viršus yra pradinis skliaustas, galima daryti išvadą, kad yra pasikartojančių skliausteliuose.

Žemiau yra aukščiau pateiktos idėjos įgyvendinimas: 



C++
// C++ program to find duplicate parenthesis in a // balanced expression #include    using namespace std; // Function to find duplicate parenthesis in a // balanced expression bool findDuplicateparenthesis(string str) {  // create a stack of characters  stack<char> Stack;  // Iterate through the given expression  for (char ch : str)  {  // if current character is close parenthesis ')'  if (ch == ')')  {  // pop character from the stack  char top = Stack.top();  Stack.pop();  // stores the number of characters between a   // closing and opening parenthesis  // if this count is less than or equal to 1  // then the brackets are redundant else not  int elementsInside = 0;  while (top != '(')  {  elementsInside++;  top = Stack.top();  Stack.pop();  }  if(elementsInside < 1) {  return 1;  }  }  // push open parenthesis '(' operators and  // operands to stack  else  Stack.push(ch);  }  // No duplicates found  return false; } // Driver code int main() {  // input balanced expression  string str = '(((a+(b))+(c+d)))';  if (findDuplicateparenthesis(str))  cout << 'Duplicate Found ';  else  cout << 'No Duplicates Found ';  return 0; } 
Java
import java.util.Stack; // Java program to find duplicate parenthesis in a  // balanced expression  public class GFG { // Function to find duplicate parenthesis in a  // balanced expression   static boolean findDuplicateparenthesis(String s) {  // create a stack of characters   Stack<Character> Stack = new Stack<>();  // Iterate through the given expression   char[] str = s.toCharArray();  for (char ch : str) {  // if current character is close parenthesis ')'   if (ch == ')') {  // pop character from the stack   char top = Stack.peek();  Stack.pop();  // stores the number of characters between a   // closing and opening parenthesis   // if this count is less than or equal to 1   // then the brackets are redundant else not   int elementsInside = 0;  while (top != '(') {  elementsInside++;  top = Stack.peek();  Stack.pop();  }  if (elementsInside < 1) {  return true;  }  } // push open parenthesis '(' operators and   // operands to stack   else {  Stack.push(ch);  }  }  // No duplicates found   return false;  } // Driver code  public static void main(String[] args) {  // input balanced expression   String str = '(((a+(b))+(c+d)))';  if (findDuplicateparenthesis(str)) {  System.out.println('Duplicate Found ');  } else {  System.out.println('No Duplicates Found ');  }  } } 
Python
# Python3 program to find duplicate  # parenthesis in a balanced expression  # Function to find duplicate parenthesis  # in a balanced expression  def findDuplicateparenthesis(string): # create a stack of characters  Stack = [] # Iterate through the given expression  for ch in string: # if current character is  # close parenthesis ')'  if ch == ')': # pop character from the stack  top = Stack.pop() # stores the number of characters between  # a closing and opening parenthesis  # if this count is less than or equal to 1  # then the brackets are redundant else not  elementsInside = 0 while top != '(': elementsInside += 1 top = Stack.pop() if elementsInside < 1: return True # push open parenthesis '(' operators  # and operands to stack  else: Stack.append(ch) # No duplicates found  return False # Driver Code if __name__ == '__main__': # input balanced expression  string = '(((a+(b))+(c+d)))' if findDuplicateparenthesis(string) == True: print('Duplicate Found') else: print('No Duplicates Found') # This code is contributed by Rituraj Jain 
C#
// C# program to find duplicate parenthesis  // in a balanced expression  using System; using System.Collections.Generic; class GFG  { // Function to find duplicate parenthesis  // in a balanced expression  static Boolean findDuplicateparenthesis(String s)  {  // create a stack of characters   Stack<char> Stack = new Stack<char>();  // Iterate through the given expression   char[] str = s.ToCharArray();  foreach (char ch in str)   {  // if current character is   // close parenthesis ')'   if (ch == ')')   {  // pop character from the stack   char top = Stack.Peek();  Stack.Pop();  // stores the number of characters between  // a closing and opening parenthesis   // if this count is less than or equal to 1   // then the brackets are redundant else not   int elementsInside = 0;  while (top != '(')   {  elementsInside++;  top = Stack.Peek();  Stack.Pop();  }  if (elementsInside < 1)   {  return true;  }  }     // push open parenthesis '('   // operators and operands to stack   else   {  Stack.Push(ch);  }  }  // No duplicates found   return false; } // Driver code  public static void Main(String[] args) {  // input balanced expression   String str = '(((a+(b))+(c+d)))';  if (findDuplicateparenthesis(str))  {  Console.WriteLine('Duplicate Found ');  }   else   {  Console.WriteLine('No Duplicates Found ');  } } } // This code is contributed by 29AjayKumar 
JavaScript
// JavaScript program to find duplicate parentheses in a balanced expression function findDuplicateParenthesis(s) {  let stack = [];  // Iterate through the given expression  for (let ch of s) {    // If current character is a closing parenthesis ')'  if (ch === ')') {  let top = stack.pop();    // Count the number of elements  // inside the parentheses  let elementsInside = 0;  while (top !== '(') {  elementsInside++;  top = stack.pop();  }    // If there's nothing or only one element   // inside it's redundant  if (elementsInside < 1) {  return true;  }  }   // Push open parenthesis '(' operators and operands to stack  else {  stack.push(ch);  }  }  // No duplicates found  return false; } // Driver code let str = '(((a+(b))+(c+d)))'; if (findDuplicateParenthesis(str)) {  console.log('Duplicate Found'); } else {  console.log('No Duplicates Found'); } // This code is contributed by rag2127 

Išvestis
Duplicate Found 

Išvestis:  

Duplicate Found

Laiko sudėtingumas aukščiau pateikto tirpalo yra O(n). 

Pagalbinė erdvė programos naudojamas yra O(n).