logo

Bendra visų nulių aprėptis dvejetainėje matricoje

Išbandykite „GfG Practice“. ' title= #practiceLinkDiv { display: none !important; }

Atsižvelgiant į dvejetainę matricą, ty joje yra tik 0 ir 1, mums reikia rasti visų matricos nulių aprėpties sumą, kur konkretaus 0 aprėptis apibrėžiamas kaip bendras vienetų skaičius aplink nulį kairėje dešinėje į viršų ir apačią. Jie gali būti bet kur iki kampo krypties. 

Pavyzdžiai:  

Input : mat[][] = {0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0} Output : 20 First four zeros are surrounded by only one 1. So coverage for zeros in first row is 1 + 1 + 1 + 1 Zeros in second row are surrounded by three 1's. Note that there is no 1 above. There are 1's in all other three directions. Coverage of zeros in second row = 3 + 3. Similarly counting for others also we get overall count as below. 1 + 1 + 1 + 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 20 Input : mat[][] = {1 1 1 0 1 0 0 1} Output : 8 Coverage of first zero is 2 Coverages of other two zeros is 3 Total coverage = 2 + 3 + 3 = 8
Recommended Practice Visų nulių aprėptis dvejetainėje matricoje Išbandykite!

A paprastas sprendimas Norėdami išspręsti šią problemą, nepriklausomai skaičiuodami vienetus aplink nulius, t. y. keturis kartus paleidžiame kilpą kiekviena kryptimi kiekvienai nurodytos matricos langeliui. Kai randame 1 bet kurioje kilpoje, nutraukiame kilpą ir padidiname rezultatą 1.



gigabaitas vs megabaitas

An efektyvus sprendimas tai daryti taip. 

  1. Perkelkite visas eilutes iš kairės į dešinę, padidindami rezultatą, jei jau matomas 1 (dabartiniame judėjime), o dabartinis elementas yra 0.
  2. Perkelkite visas eilutes iš dešinės į kairę, padidindami rezultatą, jei jau matomas 1 (dabartiniame judėjime), o dabartinis elementas yra 0.
  3. Perkelkite visus stulpelius iš viršaus į apačią, padidinkite rezultatą, jei jau matomas 1 (dabartiniame judėjime), o dabartinis elementas yra 0.
  4. Pereikite visus stulpelius iš apačios į viršų, padidinkite rezultatą, jei jau matomas 1 (dabartiniame judėjime), o dabartinis elementas yra 0.

Žemiau esančiame kode imamas Būlio kintamasis isOne, kuris pasitvirtina, kai tik aptinkamas vienetas einamajame visų nulių perėjime, po to, kai iteracijos rezultatas padidinamas viena ta pačia procedūra, taikoma visomis keturiomis kryptimis, kad būtų gautas galutinis atsakymas. Iš naujo nustatome „isOne“ į „false“ po kiekvieno perėjimo.

C++
// C++ program to get total coverage of all zeros in // a binary matrix #include    using namespace std; #define R 4 #define C 4 // Returns total coverage of all zeros in mat[][] int getTotalCoverageOfMatrix(int mat[R][C]) {  int res = 0;  // looping for all rows of matrix  for (int i = 0; i < R; i++)  {  bool isOne = false; // 1 is not seen yet  // looping in columns from left to right  // direction to get left ones  for (int j = 0; j < C; j++)  {  // If one is found from left  if (mat[i][j] == 1)  isOne = true;  // If 0 is found and we have found  // a 1 before.  else if (isOne)  res++;  }  // Repeat the above process for right to  // left direction.  isOne = false;  for (int j = C-1; j >= 0; j--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns for up and down  // directions.  for (int j = 0; j < C; j++)  {  bool isOne = false; // 1 is not seen yet  for (int i = 0; i < R; i++)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (int i = R-1; i >= 0; i--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res; } // Driver code to test above methods int main() {  int mat[R][C] = {{0 0 0 0}  {1 0 0 1}  {0 1 1 0}  {0 1 0 0}  };  cout << getTotalCoverageOfMatrix(mat);  return 0; } 
Java
// Java program to get total  // coverage of all zeros in  // a binary matrix import java .io.*; class GFG  { static int R = 4; static int C = 4; // Returns total coverage // of all zeros in mat[][] static int getTotalCoverageOfMatrix(int [][]mat) {  int res = 0;  // looping for all   // rows of matrix  for (int i = 0; i < R; i++)  {  // 1 is not seen yet  boolean isOne = false;   // looping in columns from   // left to right direction  // to get left ones  for (int j = 0; j < C; j++)  {  // If one is found  // from left  if (mat[i][j] == 1)  isOne = true;  // If 0 is found and we   // have found a 1 before.  else if (isOne)  res++;  }  // Repeat the above   // process for right   // to left direction.  isOne = false;  for (int j = C - 1; j >= 0; j--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns  // for up and down directions.  for (int j = 0; j < C; j++)  {  // 1 is not seen yet  boolean isOne = false;   for (int i = 0; i < R; i++)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (int i = R - 1; i >= 0; i--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res; } // Driver code  static public void main (String[] args) {  int [][]mat = {{0 0 0 0}  {1 0 0 1}  {0 1 1 0}  {0 1 0 0}}; System.out.println(  getTotalCoverageOfMatrix(mat)); } } // This code is contributed by anuj_67. 
Python3
# Python3 program to get total coverage of all zeros in # a binary matrix R = 4 C = 4 # Returns total coverage of all zeros in mat[][] def getTotalCoverageOfMatrix(mat): res = 0 # looping for all rows of matrix for i in range(R): isOne = False # 1 is not seen yet # looping in columns from left to right # direction to get left ones for j in range(C): # If one is found from left if (mat[i][j] == 1): isOne = True # If 0 is found and we have found # a 1 before. else if (isOne): res += 1 # Repeat the above process for right to # left direction. isOne = False for j in range(C - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 # Traversing across columns for up and down # directions. for j in range(C): isOne = False # 1 is not seen yet for i in range(R): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 isOne = False for i in range(R - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 return res # Driver code mat = [[0 0 0 0][1 0 0 1][0 1 1 0][0 1 0 0]] print(getTotalCoverageOfMatrix(mat)) # This code is contributed by shubhamsingh10 
C#
// C# program to get total coverage  // of all zeros in a binary matrix using System; class GFG {   static int R = 4; static int C = 4; // Returns total coverage of all zeros in mat[][] static int getTotalCoverageOfMatrix(int []mat) {  int res = 0;  // looping for all rows of matrix  for (int i = 0; i < R; i++)  {  // 1 is not seen yet  bool isOne = false;   // looping in columns from left to   // right direction to get left ones  for (int j = 0; j < C; j++)  {  // If one is found from left  if (mat[ij] == 1)  isOne = true;  // If 0 is found and we   // have found a 1 before.  else if (isOne)  res++;  }  // Repeat the above process for   // right to left direction.  isOne = false;  for (int j = C-1; j >= 0; j--)  {  if (mat[ij] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns  // for up and down directions.  for (int j = 0; j < C; j++)  {  // 1 is not seen yet  bool isOne = false;   for (int i = 0; i < R; i++)  {  if (mat[ij] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (int i = R-1; i >= 0; i--)  {  if (mat[ij] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res; } // Driver code to test above methods  static public void Main ()  {  int []mat = {{0 0 0 0}  {1 0 0 1}  {0 1 1 0}  {0 1 0 0}};  Console.WriteLine(getTotalCoverageOfMatrix(mat));  } } // This code is contributed by vt_m. 
JavaScript
<script>  // Javascript program to get total   // coverage of all zeros in   // a binary matrix    let R = 4;  let C = 4;  // Returns total coverage  // of all zeros in mat[][]  function getTotalCoverageOfMatrix(mat)  {  let res = 0;  // looping for all   // rows of matrix  for (let i = 0; i < R; i++)  {  // 1 is not seen yet  let isOne = false;   // looping in columns from   // left to right direction  // to get left ones  for (let j = 0; j < C; j++)  {  // If one is found  // from left  if (mat[i][j] == 1)  isOne = true;  // If 0 is found and we   // have found a 1 before.  else if (isOne)  res++;  }  // Repeat the above   // process for right   // to left direction.  isOne = false;  for (let j = C - 1; j >= 0; j--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns  // for up and down directions.  for (let j = 0; j < C; j++)  {  // 1 is not seen yet  let isOne = false;   for (let i = 0; i < R; i++)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (let i = R - 1; i >= 0; i--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res;  }    let mat = [[0 0 0 0]  [1 0 0 1]  [0 1 1 0]  [0 1 0 0]];    document.write(getTotalCoverageOfMatrix(mat)); </script> 

Išvestis
20

Laiko sudėtingumas: O(n2
Pagalbinė erdvė: O(1)

 

Sukurti viktoriną