Jums suteikiama a Bitoninė seka užduotis yra surasti Bitoninis taškas joje. Bitoninė seka yra skaičių seka, kuri yra griežtai pirmoji didėja tada po taško griežtai mažėja .
Bitoninis taškas yra bitoninės sekos taškas, prieš kurį elementai griežtai didėja, o po kurio elementų griežtai mažėja.
Pastaba: duota seka visada bus galiojanti bitoninė seka.
Įvestis: arr[] = {8 10 100 200 400 500 3 2 1}
Išvestis : 500
Įvestis: arr[] = {10 20 30 40 30 20}
Išvestis : 40
Įvestis : arr[] = {60 70 120 100 80}
Išvestis: 120
Turinio lentelė
- [Naivus požiūris] Naudojant tiesinę paiešką – O(n) laikas ir O(1) erdvė
- [Numatomas metodas] Naudojant dvejetainę paiešką – O(logn) laikas ir O(1) erdvė
[Naivus požiūris] Naudojant tiesinę paiešką – O(n) laikas ir O(1) erdvė
C++Paprastas būdas yra kartoti masyvą ir sekti elementas įvyko iki šiol. kai tik perėjimas bus baigtas, grąžinkite maksimalų elementą.
// C++ program to find maximum element in bitonic // array using linear search #include #include using namespace std; int bitonicPoint(vector<int> &arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.size(); i++) res = max(res arr[i]); return res; } int main() { vector<int> arr = {8 10 100 400 500 3 2 1}; cout << bitonicPoint(arr); return 0; }
C // C program to find maximum element in bitonic // array using linear search #include int bitonicPoint(int arr[] int n) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < n; i++) res = (res > arr[i]) ? res : arr[i]; return res; } int main() { int arr[] = {8 10 100 400 500 3 2 1}; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' bitonicPoint(arr n)); return 0; }
Java // Java program to find maximum element in bitonic // array using linear search import java.util.Arrays; class GfG { static int bitonicPoint(int[] arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.length; i++) res = Math.max(res arr[i]); return res; } public static void main(String[] args) { int[] arr = {8 10 100 400 500 3 2 1}; System.out.println(bitonicPoint(arr)); } }
Python # Python program to find maximum element in # bitonic array using linear search def bitonicPoint(arr): res = arr[0] # Traverse the array to find # the maximum element for i in range(1 len(arr)): res = max(res arr[i]) return res if __name__ == '__main__': arr = [8 10 100 400 500 3 2 1] print(bitonicPoint(arr))
C# // C# program to find maximum element in bitonic // array using linear search using System; class GfG { static int bitonicPoint(int[] arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.Length; i++) res = Math.Max(res arr[i]); return res; } static void Main() { int[] arr = {8 10 100 400 500 3 2 1}; Console.WriteLine(bitonicPoint(arr)); } }
JavaScript // JavaScript program to find maximum element in // bitonic array using linear search function bitonicPoint(arr) { let res = arr[0]; // Traverse the array to find // the maximum element for (let i = 1; i < arr.length; i++) res = Math.max(res arr[i]); return res; } const arr = [8 10 100 400 500 3 2 1]; console.log(bitonicPoint(arr));
Išvestis
500
[Numatomas metodas] Naudojant dvejetainę paiešką – O(logn) laikas ir O(1) erdvė
Įvesties masyvas seka a monotoniškas modelis . Jei elementas yra mažesnis nei kitas jis guli i didėjantis segmentas masyvo ir maksimalus elementas tikrai egzistuos po jo. Ir atvirkščiai, jei elementas yra didesnis nei kitame jis slypi mažėjantis segmentas reiškia, kad maksimalus yra arba šioje pozicijoje, arba anksčiau. Todėl galime naudoti dvejetainė paieška efektyviai rasti maksimalų masyvo elementą.
// C++ program to find the maximum element in a bitonic // array using binary search. #include #include using namespace std; int bitonicPoint(vector<int> &arr) { int n = arr.size(); // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while(lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if(mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } int main() { vector<int> arr = {8 10 100 400 500 3 2 1}; cout << bitonicPoint(arr); return 0; }
C // C program to find the maximum element in a bitonic // array using binary search. #include int bitonicPoint(int arr[] int n) { // Search space for binary search. int lo = 0 hi = n - 1; int res = hi; while(lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if(mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } int main() { int arr[] = {8 10 100 400 500 3 2 1}; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' bitonicPoint(arr n)); return 0; }
Java // Java program to find the maximum element in a bitonic // array using binary search. import java.util.Arrays; class GfG { static int bitonicPoint(int[] arr) { int n = arr.length; // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } public static void main(String[] args) { int[] arr = {8 10 100 400 500 3 2 1}; System.out.println(bitonicPoint(arr)); } }
Python # Python program to find the maximum element in a bitonic # array using binary search. def bitonicPoint(arr): # Search space for binary search. lo = 0 hi = len(arr) - 1 res = hi while lo <= hi: mid = (lo + hi) // 2 # Decreasing segment if mid + 1 < len(arr) and arr[mid] > arr[mid + 1]: res = mid hi = mid - 1 # Increasing segment else: lo = mid + 1 return arr[res] if __name__ == '__main__': arr = [8 10 100 400 500 3 2 1] print(bitonicPoint(arr))
C# // C# program to find the maximum element in a bitonic // array using binary search. using System; class GfG { static int bitonicPoint(int[] arr) { int n = arr.Length; // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } static void Main() { int[] arr = {8 10 100 400 500 3 2 1}; Console.WriteLine(bitonicPoint(arr)); } }
JavaScript // JavaScript program to find the maximum element in a bitonic // array using binary search. function bitonicPoint(arr) { const n = arr.length; // Search space for binary search. let lo = 0 hi = n - 1; let res = n - 1; while (lo <= hi) { let mid = Math.floor((lo + hi) / 2); // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } const arr = [8 10 100 400 500 3 2 1]; console.log(bitonicPoint(arr));
Išvestis
500Sukurti viktoriną