logo

Net Fibonačio skaičių suma

Išbandykite GfG praktikoje ' title= #practiceLinkDiv { display: none !important; }

Atsižvelgiant į ribą, suraskite visų Fibonačio sekos lyginių reikšmių, esančių žemiau nurodytos ribos, sumą.
Keli pirmieji terminai Fibonačio skaičiai yra 11 2 3 5 8 13 21 34 55 89 144 233 ... (lyginiai skaičiai paryškinti).
Pavyzdžiai:  
 

Input : limit = 8 Output : 10 Explanation : 2 + 8 = 10 Input : limit = 400; Output : 188. Explanation : 2 + 8 + 34 + 144 = 188.


 

Rekomenduojama praktika Net Fibonačio skaičių suma Išbandykite!


Paprastas sprendimas yra kartoti visus Fibonačio skaičius, o kitas skaičius yra mažesnis arba lygus nurodytai ribai. Patikrinkite kiekvieną skaičių, ar jis lygus. Jei skaičius lygus, pridėkite jį prie rezultato.
Veiksmingas sprendimas pagrįstas toliau pateikta informacija rekursinė formulė net Fibonačio skaičiams
 



Recurrence for Even Fibonacci sequence is: EFn = 4EFn-1 + EFn-2 with seed values EF0 = 0 and EF1 = 2.   EFn   represents n'th term in Even Fibonacci sequence.


Nurodykite tai daugiau informacijos apie aukščiau pateiktą formulę.
Taigi kartodami per Fibonačio skaičius generuojame tik net Fibonačio skaičius. 
 

C++
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. #include   using namespace std; // Returns sum of even Fibonacci numbers which are // less than or equal to given limit. int evenFibSum(int limit) {  if (limit < 2)  return 0;  // Initialize first two even Fibonacci numbers  // and their sum  long long int ef1 = 0 ef2 = 2;  long long int sum = ef1 + ef2;  // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  long long int ef3 = 4*ef2 + ef1;  // If we go beyond limit we break loop  if (ef3 > limit)  break;  // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }  return sum; } // Driver code int main() {  int limit = 400;  cout << evenFibSum(limit);  return 0; } 
Java
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. import java.io.*; class GFG  {  // Returns sum of even Fibonacci numbers which are  // less than or equal to given limit.  static int evenFibSum(int limit)  {  if (limit < 2)  return 0;    // Initialize first two even Fibonacci numbers  // and their sum  long ef1 = 0 ef2 = 2;  long sum = ef1 + ef2;    // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  long ef3 = 4 * ef2 + ef1;    // If we go beyond limit we break loop  if (ef3 > limit)  break;    // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return(int) sum;  }    // Driver code  public static void main (String[] args)   {  int limit = 400;  System.out.println(evenFibSum(limit));    } } // This code is contributed by vt_m. 
Python3
# Find the sum of all the even-valued  # terms in the Fibonacci sequence which  # do not exceed given limit. # Returns sum of even Fibonacci numbers which # are less than or equal to given limit. def evenFibSum(limit) : if (limit < 2) : return 0 # Initialize first two even Fibonacci numbers # and their sum ef1 = 0 ef2 = 2 sm= ef1 + ef2 # calculating sum of even Fibonacci value while (ef2 <= limit) : # get next even value of Fibonacci  # sequence ef3 = 4 * ef2 + ef1 # If we go beyond limit we break loop if (ef3 > limit) : break # Move to next even number and update # sum ef1 = ef2 ef2 = ef3 sm = sm + ef2 return sm # Driver code limit = 400 print(evenFibSum(limit)) # This code is contributed by Nikita Tiwari. 
C#
// C# program to Find the sum of all // the even-valued terms in the  // Fibonacci sequence which do not // exceed given limit.given limit. using System; class GFG {    // Returns sum of even Fibonacci   // numbers which are less than or  // equal to given limit.  static int evenFibSum(int limit)  {  if (limit < 2)  return 0;    // Initialize first two even  // Fibonacci numbers and their sum  long ef1 = 0 ef2 = 2;  long sum = ef1 + ef2;    // calculating sum of even   // Fibonacci value  while (ef2 <= limit)  {    // get next even value of   // Fibonacci sequence  long ef3 = 4 * ef2 + ef1;    // If we go beyond limit  // we break loop  if (ef3 > limit)  break;    // Move to next even number  // and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return(int) sum;  }    // Driver code  public static void Main ()   {  int limit = 400;  Console.Write(evenFibSum(limit));    } } // This code is contributed by Nitin Mittal. 
PHP
 // Find the sum of all the  // even-valued terms in the  // Fibonacci sequence which  // do not exceed given limit. // Returns sum of even Fibonacci // numbers which are less than or  // equal to given limit. function evenFibSum($limit) { if ($limit < 2) return 0; // Initialize first two even  // Fibonacci numbers and their sum $ef1 = 0; $ef2 = 2; $sum = $ef1 + $ef2; // calculating sum of // even Fibonacci value while ($ef2 <= $limit) { // get next even value of // Fibonacci sequence $ef3 = 4 * $ef2 + $ef1; // If we go beyond limit // we break loop if ($ef3 > $limit) break; // Move to next even number // and update sum $ef1 = $ef2; $ef2 = $ef3; $sum += $ef2; } return $sum; } // Driver code $limit = 400; echo(evenFibSum($limit)); // This code is contributed by Ajit. ?> 
JavaScript
<script> // Javascript program to find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit.  // Returns sum of even Fibonacci numbers which are  // less than or equal to given limit.  function evenFibSum(limit)  {  if (limit < 2)  return 0;    // Initialize first two even Fibonacci numbers  // and their sum  let ef1 = 0 ef2 = 2;  let sum = ef1 + ef2;    // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  let ef3 = 4 * ef2 + ef1;    // If we go beyond limit we break loop  if (ef3 > limit)  break;    // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return sum;  }   // Function call    let limit = 400;  document.write(evenFibSum(limit));   </script> 

Išvestis:  
 

188

Laiko sudėtingumas: O(n)

Pagalbinė erdvė: O(1)

eilutės į int konvertavimas Java