logo

Poblokių, kurių didžiausias elementas yra didesnis nei k, skaičius

Atsižvelgiant į masyvą n elementai ir sveikasis skaičius k . Užduotis yra rasti pogrupio, kurio didžiausias elementas didesnis nei K, skaičių.

Pavyzdžiai:  

Input : arr[] = {1 2 3} and k = 2.  
Output : 3
All the possible subarrays of arr[] are
{ 1 } { 2 } { 3 } { 1 2 } { 2 3 }
{ 1 2 3 }.
Their maximum elements are 1 2 3 2 3 3.
There are only 3 maximum elements > 2.
Recommended Practice Subarrays grafas Išbandykite!

1 metodas: skaičiuojant pogrupius, turinčius maks. elementą<= K and then subtracting from total subarrays.

Idėja yra spręsti problemą skaičiuojant pogrupius, kurių maksimalus elementas yra mažesnis arba lygus k, nes suskaičiuoti tokias dalis yra lengviau. Norėdami rasti pogrupio, kurio didžiausias elementas yra mažesnis arba lygus k, skaičių, pašalinkite visus elementus, kurie yra didesni už K, ir suraskite pogrupio su kairiaisiais elementais skaičių. 



Kai rasime aukščiau pateiktą skaičių, galime atimti jį iš n*(n+1)/2, kad gautume reikiamą rezultatą. Stebėkite, kad gali būti n*(n+1)/2 galimas bet kurio n dydžio masyvo pogrupių skaičius. Taigi, suradę posistemės, kurios didžiausias elementas yra mažesnis arba lygus K, skaičių ir atėmus jį iš n*(n+1)/2, gauname atsakymą.

Žemiau pateikiamas šio metodo įgyvendinimas:

C++
// C++ program to count number of subarrays // whose maximum element is greater than K. #include    using namespace std; // Return number of subarrays whose maximum // element is less than or equal to K. int countSubarray(int arr[] int n int k) {  // To store count of subarrays with all  // elements less than or equal to k.  int s = 0;  // Traversing the array.  int i = 0;  while (i < n) {  // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }  // Counting the subarray length whose  // each element is less than equal to k.  int count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }  // Summing number of subarray whose  // maximum element is less than equal to k.  s += ((count * (count + 1)) / 2);  }  return (n * (n + 1) / 2 - s); } // Driven Program int main() {  int arr[] = { 1 2 3 };  int k = 2;  int n = sizeof(arr) / sizeof(arr[0]);  cout << countSubarray(arr n k);  return 0; } 
Java
// Java program to count number of subarrays // whose maximum element is greater than K. import java.util.*; class GFG {  // Return number of subarrays whose maximum  // element is less than or equal to K.  static int countSubarray(int arr[] int n int k)  {  // To store count of subarrays with all  // elements less than or equal to k.  int s = 0;  // Traversing the array.  int i = 0;  while (i < n) {  // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }  // Counting the subarray length whose  // each element is less than equal to k.  int count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }  // Summing number of subarray whose  // maximum element is less than equal to k.  s += ((count * (count + 1)) / 2);  }  return (n * (n + 1) / 2 - s);  }  // Driver code  public static void main(String[] args)  {  int arr[] = { 1 2 3 };  int k = 2;  int n = arr.length;  System.out.print(countSubarray(arr n k));  } } // This code is contributed by Anant Agarwal. 
Python3
# Python program to count # number of subarrays # whose maximum element # is greater than K. # Return number of # subarrays whose maximum # element is less than or equal to K. def countSubarray(arr n k): # To store count of # subarrays with all # elements less than # or equal to k. s = 0 # Traversing the array. i = 0 while (i < n): # If element is greater # than k ignore. if (arr[i] > k): i = i + 1 continue # Counting the subarray # length whose # each element is less # than equal to k. count = 0 while (i < n and arr[i] <= k): i = i + 1 count = count + 1 # Summing number of subarray whose # maximum element is less # than equal to k. s = s + ((count*(count + 1))//2) return (n*(n + 1)//2 - s) # Driver code arr = [1 2 3] k = 2 n = len(arr) print(countSubarray(arr n k)) # This code is contributed # by Anant Agarwal. 
C#
// C# program to count number of subarrays // whose maximum element is greater than K. using System; class GFG {  // Return number of subarrays whose maximum  // element is less than or equal to K.  static int countSubarray(int[] arr int n int k)  {  // To store count of subarrays with all  // elements less than or equal to k.  int s = 0;  // Traversing the array.  int i = 0;  while (i < n) {  // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }  // Counting the subarray length whose  // each element is less than equal to k.  int count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }  // Summing number of subarray whose  // maximum element is less than equal to k.  s += ((count * (count + 1)) / 2);  }  return (n * (n + 1) / 2 - s);  }  // Driver code  public static void Main()  {  int[] arr = {1 2 3};  int k = 2;  int n = arr.Length;  Console.WriteLine(countSubarray(arr n k));  } } // This code is contributed by vt_m. 
JavaScript
<script>  // Javascript program to count number of subarrays  // whose maximum element is greater than K.    // Return number of subarrays whose maximum  // element is less than or equal to K.  function countSubarray(arr n k)  {  // To store count of subarrays with all  // elements less than or equal to k.  let s = 0;    // Traversing the array.  let i = 0;  while (i < n) {    // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }    // Counting the subarray length whose  // each element is less than equal to k.  let count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }    // Summing number of subarray whose  // maximum element is less than equal to k.  s += parseInt((count * (count + 1)) / 2 10);  }    return (n * parseInt((n + 1) / 2 10) - s);  }    let arr = [1 2 3];  let k = 2;  let n = arr.length;  document.write(countSubarray(arr n k));   </script> 
PHP
 // PHP program to count number of subarrays // whose maximum element is greater than K. // Return number of subarrays whose maximum // element is less than or equal to K. function countSubarray( $arr $n $k) { // To store count of subarrays with all // elements less than or equal to k. $s = 0; // Traversing the array. $i = 0; while ($i < $n) { // If element is greater than k // ignore. if ($arr[$i] > $k) { $i++; continue; } // Counting the subarray length  // whose each element is less // than equal to k. $count = 0; while ($i < $n and $arr[$i] <= $k) { $i++; $count++; } // Summing number of subarray whose // maximum element is less than // equal to k. $s += (($count * ($count + 1)) / 2); } return ($n * ($n + 1) / 2 - $s); } // Driven Program $arr = array( 1 2 3 ); $k = 2; $n = count($arr); echo countSubarray($arr $n $k); // This code is contributed by anuj_67. ?> 

Išvestis
3 

Laiko sudėtingumas: O(n).
Pagalbinė erdvė: O(1)

2 metodas: skaičiuojant pogrupius, kurių maksimalus elementas > K

Taikant šį metodą, mes tiesiog randame pogrupių skaičių, kuriuos galima sudaryti įtraukiant elementą indekse i, kuris yra didesnis už K. Todėl, jei tarkime arr [i] > K tada visi pogrupiai, kuriuose yra šis elementas, turės didesnę nei k reikšmę, todėl mes tiesiog apskaičiuojame visas šias pogrupes kiekvienam didesniam nei K elementui ir pridedame juos atsakydami. Pirmiausia inicijuojame du kintamuosius metai = 0 čia yra atsakymas ir ankstesnis = -1 tai seka ankstesnio elemento indeksą, kuris buvo didesnis nei K.

Norėdami tai padaryti, mums tereikia trijų reikšmių kiekvienai arr [i]> K.

  1. Pogrupių skaičius, pradedant nuo indekso i . Tai bus ( N - i ) . PASTABA: į tai įtraukėme pogrupį, kuriame yra vienas elementas, kuris yra pats elementas. {arr [i]}
  2. Poblokių, kurie baigiasi šiuo indeksu, skaičius i bet pradinis šių pogrupių indeksas yra po indekso ankstesnė ankstesnio elemento, kuris buvo didesnis nei K, kodėl tai darome? Kadangi šiems elementams turime jau apskaičiavę atsakymą, kad nenorėtume skaičiuoti tų pačių pogrupių daugiau nei vieną kartą. Taigi ši vertė atsiras ( aš - ankstesnis - 1) . PASTABA: atimame 1, nes jau suskaičiavome pogrupį { arr [ i ] }, turintį vieną elementą. Žr. aukščiau esančią pastabą. 
  3. Poblokių, kurių pradinis indeksas yra mažesnis nei, skaičius i bet didesnis nei ankstesnė ir pabaigos indeksas didesnis nei i . Todėl visi pogrupiai, kuriuose arr[i] yra tarp. Tai galime apskaičiuoti padauginę iš dviejų verčių. Sakykime juos kaip L = ( N - i - 1 ) ir R = (i - ankstesnis -1). Dabar mes tiesiog padauginame šiuos L ir R, nes kiekvienam 1 indeksui kairėje i pusėje yra R indeksas, kuris gali sudaryti skirtingas sudedamąsias dalis kaip pagrindinį matematikos dalyką. Taigi tai tampa L*R. Atkreipkite dėmesį, kad iš L val iš tikrųjų atėmėme 1, jei to nedarome, tada į L*R įtraukiame indeksą i, o tai reiškia, kad vėl įtraukėme 1 tipo pogrupius. Žr. 1 punktą.    

Žemiau pateikiamas šio metodo įgyvendinimas:

C++
// C++ program to count number of subarrays // whose maximum element is greater than K. #include    using namespace std; long long countSubarray(int arr[] int n int k) {  long long ans = 0 ;  int prev = - 1; //prev for keeping track of index of previous element > k;  for(int i = 0 ; i < n ; i++ ) {  if ( arr [ i ] > k ) {  ans += n - i ; //subarrays starting at index i.  ans += i - prev - 1 ; //subarrays ending at index i but starting after prev.  ans += ( n - i - 1 ) * 1LL * ( i - prev - 1 ) ; //subarrays having index i element in between.  prev = i; // updating prev  }  }  return ans; } // Driven Program int main() {  int arr[] = { 4 5 1 2 3 };  int k = 2;  int n = sizeof(arr) / sizeof(arr[0]);  cout << countSubarray(arr n k);  return 0; } // This Code is contributed by Manjeet Singh. 
Java
// Java program to count number of subarrays // whose maximum element is greater than K. import java.util.*; public class GFG {  static long countSubarray(int arr[] int n int k)  {  long ans = 0 ;  int prev = - 1; //prev for keeping track of index of previous element > k;  for(int i = 0 ; i < n ; i++ ) {  if ( arr [ i ] > k ) {  ans += n - i ; //subarrays starting at index i.  ans += i - prev - 1 ; //subarrays ending at index i but starting after prev.  ans += ( n - i - 1 ) * 1L * ( i - prev - 1 ) ; //subarrays having index i element in between.  prev = i; // updating prev  }  }  return ans;  }  // Driver code  public static void main(String[] args)  {  int arr[] = { 4 5 1 2 3 };  int k = 2;  int n = arr.length;  System.out.print(countSubarray(arr n k));  } } //This Code is contributed by Manjeet Singh 
Python3
# Python program to count number of subarrays # whose maximum element is greater than K. def countSubarray( arr n k): ans = 0 ; prev = - 1; #prev for keeping track of index of previous element > k; for i in range(0n): if ( arr [ i ] > k ) : ans += n - i ; #subarrays starting at index i. ans += i - prev - 1 ; #subarrays ending at index i but starting after prev. ans += ( n - i - 1 ) * ( i - prev - 1 ) ; #subarrays having index i element in between. prev = i; # updating prev return ans; # Driven Program arr = [ 4 5 1 2 3 ]; k = 2; n = len(arr); print(countSubarray(arr n k)); # this code is contributed by poojaagarwal2. 
C#
// C# program to count number of subarrays // whose maximum element is greater than K. using System; public class GFG {  static long countSubarray(int[] arr int n int k)  {  long ans = 0;  int prev = -1; // prev for keeping track of index of  // previous element > k;  for (int i = 0; i < n; i++) {  if (arr[i] > k) {  ans += n - i; // subarrays starting at index  // i.  ans += i - prev  - 1; // subarrays ending at index i  // but starting after prev.  ans += (n - i - 1) * (long)1  * (i - prev  - 1); // subarrays having index i  // element in between.  prev = i; // updating prev  }  }  return ans;  }  // Driver code  public static void Main(string[] args)  {  int[] arr = { 4 5 1 2 3 };  int k = 2;  int n = arr.Length;  Console.Write(countSubarray(arr n k));  } } // This Code is contributed by Karandeep1234 
JavaScript
// Javascript program to count number of subarrays // whose maximum element is greater than K. function countSubarray(arr n k) {  let ans = 0 ;  //prev for keeping track of index of previous element > k;  let prev = - 1;   for(let i = 0 ; i < n ; i++ ) {  if ( arr [ i ] > k ) {  //subarrays starting at index i.  ans += n - i ;   //subarrays ending at index i but starting after prev.  ans += i - prev - 1 ;  //subarrays having index i element in between.  ans += ( n - i - 1 ) * 1 * ( i - prev - 1 ) ;   // updating prev  prev = i;   }  }  return ans; } // Driven Program  let arr = [ 4 5 1 2 3 ];  let k = 2;  let n = arr.length;  document.write(countSubarray(arr n k));   

Išvestis
12 

Laiko sudėtingumas: O(n).

3 metodas: stumdomo lango technika.

Algoritmas:

1. Inicijuoti kintamąjį metai = 0 kintamasis maxElement = 0 ir kintamasis skaičius = 0 .

2. Pakartokite masyvą, atlikdami šiuos veiksmus kiekvienam elementui:

  a. Jeigu dabartinis elementas t.y. arr[i] yra didesnis nei dabartinis maksimalus atnaujinimas maksimalus t.y. radijas = arr] ir iš naujo nustatykite skaičių iki 0.

  b. Jei dabartinis elementas yra mažesnis už dabartinį maksimumą arba eual, padidinkite skaičių.

  c. Jeigu maxElement yra didesnis nei k tada pridėti skaičių pogrupių, kad gautumėte galutinį atsakymą ir atnaujintumėte maxElement į dabartinį elementą.

3. Grąžinti galutinį atsakymą.

Štai stumdomo lango technikos įgyvendinimas.

C++
#include    using namespace std; int countSubarray(int arr[] int n int k) {  int maxElement = 0 count = 0 ans = 0;  for(int i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  return ans; } int main() {  int arr[] = {1 2 3 4};  int k = 1;  int n = sizeof(arr) / sizeof(arr[0]);  cout << countSubarray(arr n k);  return 0; } // This code is contributed by Vaibhav Saroj 
C
#include  int countSubarray(int arr[] int n int k) {  int maxElement = 0 count = 0 ans = 0;  for(int i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  ans += (count * (count + 1)) / 2;  return ans; } int main() {  int arr[] = {1 2 3 4};  int k = 1;  int n = sizeof(arr) / sizeof(arr[0]);  printf('%dn' countSubarray(arr n k));  return 0; } // This code is contributed by Vaibhav Saroj 
Java
import java.util.*; public class GFG {  // Function to count the number of subarrays with the maximum element greater than k  public static int countSubarray(int[] arr int n int k) {  int maxElement = 0; // Variable to store the maximum element encountered so far  int count = 0; // Variable to count the length of the subarray with elements <= k  int ans = 0; // Variable to store the final result  for (int i = 0; i < n; i++) {  if (arr[i] > maxElement) {  // If the current element is greater than the maximum element  // update the maximum element and reset the count to zero.  maxElement = arr[i];  count = 0;  } else {  // increment the count  count++;  }  if (maxElement > k) {  // If the maximum element in the current subarray is greater than k  // add the count of subarrays ending at the current index (i - count + 1) to the result.  ans += (i - count + 1);  // Reset the maximum element and count to zero.  maxElement = arr[i];  count = 0;  }  }  // Return the final result  return ans;  }  public static void main(String[] args) {  int[] arr = {1 2 3 4};  int k = 1;  int n = arr.length;  // Call the countSubarray function to count the number of subarrays with maximum element greater than k  int result = countSubarray(arr n k);  System.out.println(result);  } } // THIS CODE IS CONTRIBUTED BY KIRTI AGARWAL 
Python3
def countSubarray(arr n k): maxElement count ans = 0 0 0 for i in range(n): if arr[i] > maxElement: maxElement = arr[i] count = 0 else: count += 1 if maxElement > k: ans += (i - count + 1) maxElement = arr[i] count = 0 ans += (count * (count + 1)) // 2 return ans arr = [1 2 3 4] k = 1 n = len(arr) print(countSubarray(arr n k)) # This code is contributed by Vaibhav Saroj 
C#
using System; public class Program {  public static int CountSubarray(int[] arr int n int k) {  int maxElement = 0 count = 0 ans = 0;  for(int i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  ans += (count * (count + 1)) / 2;  return ans;  }  public static void Main() {  int[] arr = {1 2 3 4};  int k = 1;  int n = arr.Length;  Console.WriteLine(CountSubarray(arr n k));  } } // This code is contributed by Vaibhav Saroj 
JavaScript
function countSubarray(arr n k) {  let maxElement = 0 count = 0 ans = 0;  for(let i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  ans += (count * (count + 1)) / 2;  return ans; } let arr = [1 2 3 4]; let k = 1; let n = arr.length; console.log(countSubarray(arr n k)); // This code is contributed by Vaibhav Saroj 

Išvestis
9 

Stumdomų langų techniką prisideda Vaibhavas Sarojus .

Laiko sudėtingumas: O( n ).
Erdvės sudėtingumas: O( 1 ).

Praktikuokite čia Subarrays grafas .

Sukurti viktoriną