logo

Kelias su minimaliomis kainomis su judesiu į kairę, dešinę, apačią ir aukštyn

Išbandykite GfG praktikoje ' title=

Pateiktas 2D dydžio tinklelis n*n kur kiekviena ląstelė nurodo išlaidas, reikalingas perėjimui per tą langelį, užduotis yra rasti minimalios išlaidos judėti iš viršuje kairėje langelį į apačioje dešinėje ląstelė. Iš tam tikros ląstelės galime persikelti 4 kryptys : kairėn dešinėn aukštyn žemyn.

Pastaba: Daroma prielaida, kad įvesties matricoje neigiamų kaštų ciklų nėra.

kartojantis žemėlapis java

Pavyzdys:



Įvestis: tinklelis = {{9 4 9 9}
{6 7 6 4}
{8 3 3 7}
{7 4 9 10}}
Išėjimas: 43
Paaiškinimas: Minimalus kaštų kelias yra 9 + 4 + 7 + 3 + 3 + 7 + 10.

Prieiga:

Idėja yra naudoti Dijkstros algoritmas rasti minimalių sąnaudų kelią tinklelyje. Taikant šį metodą tinklelis traktuojamas kaip grafikas, kuriame kiekvienas langelis yra mazgas, o algoritmas dinamiškai tiria ekonomiškiausią kelią į apatinį dešinįjį langelį, pirmiausia išplėsdamas mažiausią kainą turinčius kelius.

Žingsnis po žingsnio požiūris:

eilutės vertė
  1. Naudokite minimalią krūvą, kad visada pirmiausia apdorotumėte mažiausią kainą turintį kelią ir įstumtumėte į jį viršutinį kairįjį langelį.
  2. Inicijuokite išlaidų matricą su didžiausiomis reikšmėmis, nustatydami pradžios langelio kainą į tinklelio vertę.
  3. Kiekviename langelyje patikrinkite visas 4 gretimas ląsteles
    1. Jei randamas mažesnių sąnaudų kelias, atnaujinkite ląstelės kainą ir įtraukite ją į krūvą.
  4. Grąžinkite mažiausią kainą, kad pasiektumėte apatinį dešinįjį langelį.

Žemiau pateikiamas pirmiau minėto metodo įgyvendinimas:

C++
// C++ program to find minimum Cost Path with  // Left Right Bottom and Up moves allowed #include    using namespace std; // Function to check if cell is valid. bool isValidCell(int i int j int n) {  return i>=0 && i<n && j>=0 && j<n; } int minimumCostPath(vector<vector<int>> &grid) {  int n = grid.size();    // Min heap to implement dijkstra  priority_queue<vector<int>   vector<vector<int>> greater<vector<int>>> pq;    // 2d grid to store minimum cost  // to reach every cell.  vector<vector<int>> cost(n vector<int>(n INT_MAX));  cost[0][0] = grid[0][0];    // Direction vector to move in 4 directions  vector<vector<int>> dir = {{-10} {10} {0-1} {01}};    pq.push({grid[0][0] 0 0});    while (!pq.empty()) {  vector<int> top = pq.top();  pq.pop();    int c = top[0] i = top[1] j = top[2];    // Check for all 4 neighbouring cells.  for (auto d: dir) {  int x = i + d[0];  int y = j + d[1];    // If cell is valid and cost to reach this cell   // from current cell is less  if (isValidCell(x y n) &&   cost[i][j]+grid[x][y]<cost[x][y]) {    // Update cost to reach this cell.  cost[x][y] = cost[i][j]+grid[x][y];    // Push the cell into heap.  pq.push({cost[x][y] x y});  }  }  }    // Return minimum cost to   // reach bottom right cell.  return cost[n-1][n-1]; } int main() {  vector<vector<int>> grid =   {{9499}{6764}{8337}{74910}};    cout << minimumCostPath(grid) << endl;    return 0; } 
Java
// Java program to find minimum Cost Path with  // Left Right Bottom and Up moves allowed import java.util.PriorityQueue; import java.util.Arrays; class GfG {  // Function to check if cell is valid.  static boolean isValidCell(int i int j int n) {  return i >= 0 && i < n && j >= 0 && j < n;  }  static int minimumCostPath(int[][] grid) {  int n = grid.length;    // Min heap to implement Dijkstra  PriorityQueue<int[]> pq =   new PriorityQueue<>((a b) -> Integer.compare(a[0] b[0]));    // 2D grid to store minimum cost  // to reach every cell.  int[][] cost = new int[n][n];  for (int[] row : cost) {  Arrays.fill(row Integer.MAX_VALUE);  }  cost[0][0] = grid[0][0];    // Direction vector to move in 4 directions  int[][] dir = {{-1 0} {1 0} {0 -1} {0 1}};    pq.offer(new int[]{grid[0][0] 0 0});    while (!pq.isEmpty()) {  int[] top = pq.poll();    int c = top[0] i = top[1] j = top[2];    // Check for all 4 neighbouring cells.  for (int[] d : dir) {  int x = i + d[0];  int y = j + d[1];    // If cell is valid and cost to reach this cell   // from current cell is less  if (isValidCell(x y n) && cost[i][j] + grid[x][y] < cost[x][y]) {    // Update cost to reach this cell.  cost[x][y] = cost[i][j] + grid[x][y];    // Push the cell into heap.  pq.offer(new int[]{cost[x][y] x y});  }  }  }    // Return minimum cost to   // reach bottom right cell.  return cost[n - 1][n - 1];  }  public static void main(String[] args) {  int[][] grid = {  {9 4 9 9}  {6 7 6 4}  {8 3 3 7}  {7 4 9 10}  };    System.out.println(minimumCostPath(grid));  } } 
Python
# Python program to find minimum Cost Path with  # Left Right Bottom and Up moves allowed import heapq # Function to check if cell is valid. def isValidCell(i j n): return i >= 0 and i < n and j >= 0 and j < n def minimumCostPath(grid): n = len(grid) # Min heap to implement Dijkstra pq = [] # 2D grid to store minimum cost # to reach every cell. cost = [[float('inf')] * n for _ in range(n)] cost[0][0] = grid[0][0] # Direction vector to move in 4 directions dir = [[-1 0] [1 0] [0 -1] [0 1]] heapq.heappush(pq [grid[0][0] 0 0]) while pq: c i j = heapq.heappop(pq) # Check for all 4 neighbouring cells. for d in dir: x y = i + d[0] j + d[1] # If cell is valid and cost to reach this cell  # from current cell is less if isValidCell(x y n) and cost[i][j] + grid[x][y] < cost[x][y]: # Update cost to reach this cell. cost[x][y] = cost[i][j] + grid[x][y] # Push the cell into heap. heapq.heappush(pq [cost[x][y] x y]) # Return minimum cost to  # reach bottom right cell. return cost[n - 1][n - 1] if __name__ == '__main__': grid = [ [9 4 9 9] [6 7 6 4] [8 3 3 7] [7 4 9 10] ] print(minimumCostPath(grid)) 
C#
// C# program to find minimum Cost Path with  // Left Right Bottom and Up moves allowed using System; using System.Collections.Generic; class GfG {  // Function to check if cell is valid.  static bool isValidCell(int i int j int n) {  return i >= 0 && i < n && j >= 0 && j < n;  }  static int minimumCostPath(int[][] grid) {  int n = grid.Length;    // Min heap to implement Dijkstra  var pq = new SortedSet<(int cost int x int y)>();    // 2D grid to store minimum cost  // to reach every cell.  int[][] cost = new int[n][];  for (int i = 0; i < n; i++) {  cost[i] = new int[n];  Array.Fill(cost[i] int.MaxValue);  }  cost[0][0] = grid[0][0];    // Direction vector to move in 4 directions  int[][] dir = { new int[] {-1 0} new int[] {1 0}   new int[] {0 -1} new int[] {0 1} };    pq.Add((grid[0][0] 0 0));    while (pq.Count > 0) {  var top = pq.Min;  pq.Remove(top);    int i = top.x j = top.y;    // Check for all 4 neighbouring cells.  foreach (var d in dir) {  int x = i + d[0];  int y = j + d[1];    // If cell is valid and cost to reach this cell   // from current cell is less  if (isValidCell(x y n) &&   cost[i][j] + grid[x][y] < cost[x][y]) {    // Update cost to reach this cell.  cost[x][y] = cost[i][j] + grid[x][y];    // Push the cell into heap.  pq.Add((cost[x][y] x y));  }  }  }    // Return minimum cost to   // reach bottom right cell.  return cost[n - 1][n - 1];  }  static void Main(string[] args) {  int[][] grid = new int[][] {  new int[] {9 4 9 9}  new int[] {6 7 6 4}  new int[] {8 3 3 7}  new int[] {7 4 9 10}  };    Console.WriteLine(minimumCostPath(grid));  } } 
JavaScript
// JavaScript program to find minimum Cost Path with // Left Right Bottom and Up moves allowed function comparator(a b) {  if (a[0] > b[0]) return -1;  if (a[0] < b[0]) return 1;  return 0; } class PriorityQueue {  constructor(compare) {  this.heap = [];  this.compare = compare;  }  enqueue(value) {  this.heap.push(value);  this.bubbleUp();  }  bubbleUp() {  let index = this.heap.length - 1;  while (index > 0) {  let element = this.heap[index]  parentIndex = Math.floor((index - 1) / 2)  parent = this.heap[parentIndex];  if (this.compare(element parent) < 0) break;  this.heap[index] = parent;  this.heap[parentIndex] = element;  index = parentIndex;  }  }  dequeue() {  let max = this.heap[0];  let end = this.heap.pop();  if (this.heap.length > 0) {  this.heap[0] = end;  this.sinkDown(0);  }  return max;  }  sinkDown(index) {  let left = 2 * index + 1  right = 2 * index + 2  largest = index;  if (  left < this.heap.length &&  this.compare(this.heap[left] this.heap[largest]) > 0  ) {  largest = left;  }  if (  right < this.heap.length &&  this.compare(this.heap[right] this.heap[largest]) > 0  ) {  largest = right;  }  if (largest !== index) {  [this.heap[largest] this.heap[index]] = [  this.heap[index]  this.heap[largest]  ];  this.sinkDown(largest);  }  }  isEmpty() {  return this.heap.length === 0;  } } // Function to check if cell is valid. function isValidCell(i j n) {  return i >= 0 && i < n && j >= 0 && j < n; } function minimumCostPath(grid) {  let n = grid.length;  // Min heap to implement Dijkstra  const pq = new PriorityQueue(comparator)  // 2D grid to store minimum cost  // to reach every cell.  let cost = Array.from({ length: n } () => Array(n).fill(Infinity));  cost[0][0] = grid[0][0];  // Direction vector to move in 4 directions  let dir = [[-1 0] [1 0] [0 -1] [0 1]];  pq.enqueue([grid[0][0] 0 0]);  while (!pq.isEmpty()) {  let [c i j] = pq.dequeue();  // Check for all 4 neighbouring cells.  for (let d of dir) {  let x = i + d[0];  let y = j + d[1];  // If cell is valid and cost to reach this cell  // from current cell is less  if (isValidCell(x y n) && cost[i][j] + grid[x][y] < cost[x][y]) {  // Update cost to reach this cell.  cost[x][y] = cost[i][j] + grid[x][y];  // Push the cell into heap.  pq.enqueue([cost[x][y] x y]);  }  }  }  // Return minimum cost to  // reach bottom right cell.  return cost[n - 1][n - 1]; } let grid = [  [9 4 9 9]  [6 7 6 4]  [8 3 3 7]  [7 4 9 10]  ]; console.log(minimumCostPath(grid)); 

Išvestis
43 

Laiko sudėtingumas: O(n^2 log(n^2))
Pagalbinė erdvė: O(n^2 log(n^2))

Kodėl negalima naudoti dinaminio programavimo?

Dinaminis programavimas čia nepavyksta, nes leidžiant judėti visomis keturiomis kryptimis sukuriami ciklai, kuriuose ląstelės gali būti peržiūrimos, pažeidžiant optimalią pagrindo prielaidą. Tai reiškia, kad kaina pasiekti langelį iš tam tikro langelio nėra fiksuota, bet priklauso nuo viso kelio.

Susiję straipsniai:

Minimalios kainos kelias

Sukurti viktoriną