#practiceLinkDiv { display: none !important; }Atsižvelgiant į dvejetainį medį, suraskite ilgiausio kelio, kurį sudaro mazgai su iš eilės reikšmėmis didėjančia tvarka, ilgį. Kiekvienas mazgas laikomas 1 ilgio keliu.
Pavyzdžiai:
tu esi sandūra
In below diagram binary tree with longest consecutive path(LCP) are shown :

Aukščiau pateiktą problemą galime išspręsti rekursyviai. Kiekviename mazge mums reikia informacijos apie jo pirminį mazgą, jei dabartinis mazgas turi vienu didesnę reikšmę nei jo pirminis mazgas, tada kiekviename mazge jis nukeliauja iš eilės, palyginsime mazgo vertę su pagrindine verte ir atitinkamai atnaujinsime ilgiausią iš eilės kelią.
Norėdami gauti pirminio mazgo vertę, perduosime (mazgo_vertė + 1) kaip argumentą rekursiniam metodui ir palyginsime mazgo vertę su šia argumento reikšme, jei tenkina, atnaujinkite dabartinį nuoseklaus kelio ilgį, kitaip iš naujo inicijuosime dabartinį kelio ilgį 1.
Norėdami geriau suprasti, žiūrėkite žemiau esantį kodą:
C++// C/C++ program to find longest consecutive // sequence in binary tree #include using namespace std; /* A binary tree node has data pointer to left child and a pointer to right child */ struct Node { int data; Node *left *right; }; // A utility function to create a node Node* newNode(int data) { Node* temp = new Node; temp->data = data; temp->left = temp->right = NULL; return temp; } // Utility method to return length of longest // consecutive sequence of tree void longestConsecutiveUtil(Node* root int curLength int expected int& res) { if (root == NULL) return; // if root data has one more than its parent // then increase current length if (root->data == expected) curLength++; else curLength = 1; // update the maximum by current length res = max(res curLength); // recursively call left and right subtree with // expected value 1 more than root data longestConsecutiveUtil(root->left curLength root->data + 1 res); longestConsecutiveUtil(root->right curLength root->data + 1 res); } // method returns length of longest consecutive // sequence rooted at node root int longestConsecutive(Node* root) { if (root == NULL) return 0; int res = 0; // call utility method with current length 0 longestConsecutiveUtil(root 0 root->data res); return res; } // Driver code to test above methods int main() { Node* root = newNode(6); root->right = newNode(9); root->right->left = newNode(7); root->right->right = newNode(10); root->right->right->right = newNode(11); printf('%dn' longestConsecutive(root)); return 0; }
Java // Java program to find longest consecutive // sequence in binary tree class Node { int data; Node left right; Node(int item) { data = item; left = right = null; } } class Result { int res = 0; } class BinaryTree { Node root; // method returns length of longest consecutive // sequence rooted at node root int longestConsecutive(Node root) { if (root == null) return 0; Result res = new Result(); // call utility method with current length 0 longestConsecutiveUtil(root 0 root.data res); return res.res; } // Utility method to return length of longest // consecutive sequence of tree private void longestConsecutiveUtil(Node root int curlength int expected Result res) { if (root == null) return; // if root data has one more than its parent // then increase current length if (root.data == expected) curlength++; else curlength = 1; // update the maximum by current length res.res = Math.max(res.res curlength); // recursively call left and right subtree with // expected value 1 more than root data longestConsecutiveUtil(root.left curlength root.data + 1 res); longestConsecutiveUtil(root.right curlength root.data + 1 res); } // Driver code public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node(6); tree.root.right = new Node(9); tree.root.right.left = new Node(7); tree.root.right.right = new Node(10); tree.root.right.right.right = new Node(11); System.out.println(tree.longestConsecutive(tree.root)); } } // This code is contributed by shubham96301
Python3 # Python3 program to find longest consecutive # sequence in binary tree # A utility class to create a node class newNode: def __init__(self data): self.data = data self.left = self.right = None # Utility method to return length of # longest consecutive sequence of tree def longestConsecutiveUtil(root curLength expected res): if (root == None): return # if root data has one more than its # parent then increase current length if (root.data == expected): curLength += 1 else: curLength = 1 # update the maximum by current length res[0] = max(res[0] curLength) # recursively call left and right subtree # with expected value 1 more than root data longestConsecutiveUtil(root.left curLength root.data + 1 res) longestConsecutiveUtil(root.right curLength root.data + 1 res) # method returns length of longest consecutive # sequence rooted at node root def longestConsecutive(root): if (root == None): return 0 res = [0] # call utility method with current length 0 longestConsecutiveUtil(root 0 root.data res) return res[0] # Driver Code if __name__ == '__main__': root = newNode(6) root.right = newNode(9) root.right.left = newNode(7) root.right.right = newNode(10) root.right.right.right = newNode(11) print(longestConsecutive(root)) # This code is contributed by PranchalK
C# // C# program to find longest consecutive // sequence in binary tree using System; class Node { public int data; public Node left right; public Node(int item) { data = item; left = right = null; } } class Result { public int res = 0; } class GFG { Node root; // method returns length of longest consecutive // sequence rooted at node root int longestConsecutive(Node root) { if (root == null) return 0; Result res = new Result(); // call utility method with current length 0 longestConsecutiveUtil(root 0 root.data res); return res.res; } // Utility method to return length of longest // consecutive sequence of tree private void longestConsecutiveUtil(Node root int curlength int expected Result res) { if (root == null) return; // if root data has one more than its parent // then increase current length if (root.data == expected) curlength++; else curlength = 1; // update the maximum by current length res.res = Math.Max(res.res curlength); // recursively call left and right subtree with // expected value 1 more than root data longestConsecutiveUtil(root.left curlength root.data + 1 res); longestConsecutiveUtil(root.right curlength root.data + 1 res); } // Driver code public static void Main(String []args) { GFG tree = new GFG(); tree.root = new Node(6); tree.root.right = new Node(9); tree.root.right.left = new Node(7); tree.root.right.right = new Node(10); tree.root.right.right.right = new Node(11); Console.WriteLine(tree.longestConsecutive(tree.root)); } } // This code is contributed by 29AjayKumar
JavaScript <script> // JavaScript program to find longest consecutive // sequence in binary tree class Node { constructor(item) { this.data=item; this.left = this.right = null; } } let res = 0; let root; function longestConsecutive(root) { if (root == null) return 0; res=[0]; // call utility method with current length 0 longestConsecutiveUtil(root 0 root.data res); return res[0]; } // Utility method to return length of longest // consecutive sequence of tree function longestConsecutiveUtil(rootcurlength expectedres) { if (root == null) return; // if root data has one more than its parent // then increase current length if (root.data == expected) curlength++; else curlength = 1; // update the maximum by current length res[0] = Math.max(res[0] curlength); // recursively call left and right subtree with // expected value 1 more than root data longestConsecutiveUtil(root.left curlength root.data + 1 res); longestConsecutiveUtil(root.right curlength root.data + 1 res); } // Driver code root = new Node(6); root.right = new Node(9); root.right.left = new Node(7); root.right.right = new Node(10); root.right.right.right = new Node(11); document.write(longestConsecutive(root)); // This code is contributed by rag2127 </script>
Išvestis
3
Laiko sudėtingumas: O(N), kur N yra mazgų skaičius duotame dvejetainiame medyje.
Pagalbinė erdvė: O(log(N))
Taip pat aptarta žemiau esančioje nuorodoje:
Didžiausias iš eilės didėjančio kelio ilgis dvejetainiame medyje
java jei kitaip