Suskaičiuokite tas poras, kurių produkto vertė yra masyve.
Pavyzdžiai:
Input : arr[] = {6 2 4 12 5 3}
Output : 3
All pairs whose product exist in array
(6 2) (2 3) (4 3)
Input : arr[] = {3 5 2 4 15 8}
Output : 2
A Paprastas sprendimas yra sugeneruoti visas nurodyto masyvo poras ir patikrinti, ar masyve yra produktas. Jei yra, padidinkite skaičių. Galiausiai grąžinimo skaičius.
Žemiau yra aukščiau pateiktos idėjos įgyvendinimas
10 iš 1 mlnC++
// C++ program to count pairs whose product exist in array #include using namespace std; // Returns count of pairs whose product exists in arr[] int countPairs( int arr[] int n) { int result = 0; for (int i = 0; i < n ; i++) { for (int j = i+1 ; j < n ; j++) { int product = arr[i] * arr[j] ; // find product in an array for (int k = 0; k < n; k++) { // if product found increment counter if (arr[k] == product) { result++; break; } } } } // return Count of all pair whose product exist in array return result; } //Driver program int main() { int arr[] = {6 2 4 12 5 3} ; int n = sizeof(arr)/sizeof(arr[0]); cout << countPairs(arr n); return 0; }
Java // Java program to count pairs // whose product exist in array import java.io.*; class GFG { // Returns count of pairs // whose product exists in arr[] static int countPairs(int arr[] int n) { int result = 0; for (int i = 0; i < n ; i++) { for (int j = i + 1 ; j < n ; j++) { int product = arr[i] * arr[j] ; // find product // in an array for (int k = 0; k < n; k++) { // if product found // increment counter if (arr[k] == product) { result++; break; } } } } // return Count of all pair // whose product exist in array return result; } // Driver Code public static void main (String[] args) { int arr[] = {6 2 4 12 5 3} ; int n = arr.length; System.out.println(countPairs(arr n)); } } // This code is contributed by anuj_67.
Python 3 # Python program to count pairs whose # product exist in array # Returns count of pairs whose # product exists in arr[] def countPairs(arr n): result = 0; for i in range (0 n): for j in range(i + 1 n): product = arr[i] * arr[j] ; # find product in an array for k in range (0 n): # if product found increment counter if (arr[k] == product): result = result + 1; break; # return Count of all pair whose # product exist in array return result; # Driver program arr = [6 2 4 12 5 3] ; n = len(arr); print(countPairs(arr n)); # This code is contributed # by Shivi_Aggarwal
C# // C# program to count pairs // whose product exist in array using System; class GFG { // Returns count of pairs // whose product exists in arr[] public static int countPairs(int[] arr int n) { int result = 0; for (int i = 0; i < n ; i++) { for (int j = i + 1 ; j < n ; j++) { int product = arr[i] * arr[j]; // find product in an array for (int k = 0; k < n; k++) { // if product found // increment counter if (arr[k] == product) { result++; break; } } } } // return Count of all pair // whose product exist in array return result; } // Driver Code public static void Main(string[] args) { int[] arr = new int[] {6 2 4 12 5 3}; int n = arr.Length; Console.WriteLine(countPairs(arr n)); } } // This code is contributed by Shrikant13
JavaScript <script> // javascript program to count pairs // whose product exist in array // Returns count of pairs // whose product exists in arr function countPairs(arr n) { var result = 0; for (i = 0; i < n; i++) { for (j = i + 1; j < n; j++) { var product = arr[i] * arr[j]; // find product // in an array for (k = 0; k < n; k++) { // if product found // increment counter if (arr[k] == product) { result++; break; } } } } // return Count of all pair // whose product exist in array return result; } // Driver Code var arr = [ 6 2 4 12 5 3 ]; var n = arr.length; document.write(countPairs(arr n)); // This code is contributed by Rajput-Ji </script>
PHP // PHP program to count pairs // whose product exist in array // Returns count of pairs whose // product exists in arr[] function countPairs($arr $n) { $result = 0; for ($i = 0; $i < $n ; $i++) { for ($j = $i + 1 ; $j < $n ; $j++) { $product = $arr[$i] * $arr[$j] ; // find product in an array for ($k = 0; $k < $n; $k++) { // if product found increment counter if ($arr[$k] == $product) { $result++; break; } } } } // return Count of all pair whose // product exist in array return $result; } // Driver Code $arr = array(6 2 4 12 5 3); $n = sizeof($arr); echo countPairs($arr $n); // This code is contributed // by Akanksha Rai Išvestis:
3
Laiko sudėtingumas: O (n3)
Pagalbinė erdvė: O(1)
An Efektyvus sprendimas yra naudoti „hash“, kuri saugo visus masyvo elementus. Sugeneruokite visas įmanomas duoto masyvo „arr“ poras ir patikrinkite, ar kiekvienos poros sandauga yra „maišos“. Jei yra, padidinkite skaičių. Galiausiai grąžinimo skaičius.
Žemiau yra aukščiau pateiktos idėjos įgyvendinimas
// A hashing based C++ program to count pairs whose product // exists in arr[] #include using namespace std; // Returns count of pairs whose product exists in arr[] int countPairs(int arr[] int n) { int result = 0; // Create an empty hash-set that store all array element set< int > Hash; // Insert all array element into set for (int i = 0 ; i < n; i++) Hash.insert(arr[i]); // Generate all pairs and check is exist in 'Hash' or not for (int i = 0 ; i < n; i++) { for (int j = i + 1; j<n ; j++) { int product = arr[i]*arr[j]; // if product exists in set then we increment // count by 1 if (Hash.find(product) != Hash.end()) result++; } } // return count of pairs whose product exist in array return result; } // Driver program int main() { int arr[] = {6 2 4 12 5 3}; int n = sizeof(arr)/sizeof(arr[0]); cout << countPairs(arr n) ; return 0; }
Java // A hashing based Java program to count pairs whose product // exists in arr[] import java.util.*; class GFG { // Returns count of pairs whose product exists in arr[] static int countPairs(int arr[] int n) { int result = 0; // Create an empty hash-set that store all array element HashSet< Integer> Hash = new HashSet<>(); // Insert all array element into set for (int i = 0; i < n; i++) { Hash.add(arr[i]); } // Generate all pairs and check is exist in 'Hash' or not for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { int product = arr[i] * arr[j]; // if product exists in set then we increment // count by 1 if (Hash.contains(product)) { result++; } } } // return count of pairs whose product exist in array return result; } // Driver program public static void main(String[] args) { int arr[] = {6 2 4 12 5 3}; int n = arr.length; System.out.println(countPairs(arr n)); } } // This code has been contributed by 29AjayKumar
Python3 # A hashing based C++ program to count # pairs whose product exists in arr[] # Returns count of pairs whose product # exists in arr[] def countPairs(arr n): result = 0 # Create an empty hash-set that # store all array element Hash = set() # Insert all array element into set for i in range(n): Hash.add(arr[i]) # Generate all pairs and check is # exist in 'Hash' or not for i in range(n): for j in range(i + 1 n): product = arr[i] * arr[j] # if product exists in set then # we increment count by 1 if product in(Hash): result += 1 # return count of pairs whose # product exist in array return result # Driver Code if __name__ == '__main__': arr = [6 2 4 12 5 3] n = len(arr) print(countPairs(arr n)) # This code is contributed by # Sanjit_Prasad
C# // A hashing based C# program to count pairs whose product // exists in arr[] using System; using System.Collections.Generic; class GFG { // Returns count of pairs whose product exists in arr[] static int countPairs(int []arr int n) { int result = 0; // Create an empty hash-set that store all array element HashSet<int> Hash = new HashSet<int>(); // Insert all array element into set for (int i = 0; i < n; i++) { Hash.Add(arr[i]); } // Generate all pairs and check is exist in 'Hash' or not for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { int product = arr[i] * arr[j]; // if product exists in set then we increment // count by 1 if (Hash.Contains(product)) { result++; } } } // return count of pairs whose product exist in array return result; } // Driver code public static void Main(String[] args) { int []arr = {6 2 4 12 5 3}; int n = arr.Length; Console.WriteLine(countPairs(arr n)); } } /* This code contributed by PrinciRaj1992 */
JavaScript <script> // A hashing based javascript program to count pairs whose product // exists in arr // Returns count of pairs whose product exists in arr function countPairs(arr n) { var result = 0; // Create an empty hash-set that store all array element var Hash = new Set(); // Insert all array element into set for (i = 0; i < n; i++) { Hash.add(arr[i]); } // Generate all pairs and check is exist in 'Hash' or not for (i = 0; i < n; i++) { for (j = i + 1; j < n; j++) { var product = arr[i] * arr[j]; // if product exists in set then we increment // count by 1 if (Hash.has(product)) { result++; } } } // return count of pairs whose product exist in array return result; } // Driver program var arr = [ 6 2 4 12 5 3 ]; var n = arr.length; document.write(countPairs(arr n)); // This code contributed by Rajput-Ji </script>
Išvestis:
kas yra urfi javed
3
Laiko sudėtingumas: O (n2) „Pagal prielaidą įterpti operaciją take O(1) Time“
Pagalbinė erdvė: O(n)
3 būdas: netvarkingo žemėlapio naudojimas
Prieiga:
1.Sukurkite tuščią žemėlapį masyvo elementams ir jų dažniams saugoti.
2. Pereikite masyvą ir įterpkite į žemėlapį kiekvieną elementą kartu su jo dažniu.
3. Skaičiavimo kintamąjį inicijuokite iki 0, kad galėtumėte sekti porų skaičių.
4. Dar kartą perkelkite masyvą ir kiekvienam elementui patikrinkite, ar jis turi kokį nors veiksnį (išskyrus jį patį), kuris yra žemėlapyje.
5. Jei žemėlapyje yra abu veiksniai, padidinkite porų skaičių.
6. Grąžinkite porų skaičių.
Įgyvendinimas:
abstrakčioje klasėje gali būti konstruktoriusC++
#include using namespace std; // Function to count pairs whose product value is present in array int count_Pairs(int arr[] int n) { map<int int> mp; // Create a map to store the elements of the array and their frequencies // Initialize the map with the frequencies of the elements in the array for (int i = 0; i < n; i++) { mp[arr[i]]++; } int count = 0; // Initialize the count of pairs to zero // Traverse the array and check if arr[i] has a factor in the map for (int i = 0; i < n; i++) { for (int j = 1; j*j <= arr[i]; j++) { if (arr[i] % j == 0) { int factor1 = j; int factor2 = arr[i] / j; // If both factors are present in the map then increment the count of pairs if (mp.count(factor1) && mp.count(factor2)) { if (factor1 == factor2 && mp[factor1] < 2) { continue; } count++; } } } } // Return the count of pairs return count; } // Driver code int main() { // Example input int arr[] = {6 2 4 12 5 3}; int n = sizeof(arr) / sizeof(arr[0]); // Count pairs whose product value is present in array int count = count_Pairs(arr n); // Print the count cout << count << endl; return 0; }
Java import java.util.HashMap; import java.util.Map; public class Main { // Function to count pairs whose product value is // present in the array static int countPairs(int[] arr) { Map<Integer Integer> frequencyMap = new HashMap<>(); // Initialize the map with the frequencies of the // elements in the array for (int num : arr) { frequencyMap.put( num frequencyMap.getOrDefault(num 0) + 1); } int count = 0; // Initialize the count of pairs to zero // Traverse the array and check if arr[i] has a // factor in the map for (int num : arr) { for (int j = 1; j * j <= num; j++) { if (num % j == 0) { int factor1 = j; int factor2 = num / j; // If both factors are present in the // map then increment the count of // pairs if (frequencyMap.containsKey(factor1) && frequencyMap.containsKey( factor2)) { if (factor1 == factor2 && frequencyMap.get(factor1) < 2) { continue; } count++; } } } } // Return the count of pairs return count; } public static void main(String[] args) { // Example input int[] arr = { 6 2 4 12 5 3 }; // Count pairs whose product value is present in the // array int count = countPairs(arr); // Print the count System.out.println(count); } }
Python # Function to count pairs whose product value is present in the array def count_pairs(arr): # Create a dictionary to store the elements of the array and their frequencies mp = {} # Initialize the dictionary with the frequencies of the elements in the array for num in arr: if num in mp: mp[num] += 1 else: mp[num] = 1 count = 0 # Initialize the count of pairs to zero # Traverse the array and check if arr[i] has a factor in the dictionary for num in arr: for j in range(1 int(num ** 0.5) + 1): if num % j == 0: factor1 = j factor2 = num // j # If both factors are present in the dictionary # then increment the count of pairs if factor1 in mp and factor2 in mp: if factor1 == factor2 and mp[factor1] < 2: continue count += 1 return count # Driver code if __name__ == '__main__': # Example input arr = [6 2 4 12 5 3] # Count pairs whose product value is present in the array count = count_pairs(arr) # Print the count print(count)
C# using System; using System.Collections.Generic; class GFG { // Function to count pairs whose product value is // present in array static int CountPairs(int[] arr int n) { Dictionary<int int> mp = new Dictionary< int int>(); // Create a dictionary to store the // elements of the array and their // frequencies // Initialize the dictionary with the frequencies of // the elements in the array for (int i = 0; i < n; i++) { if (!mp.ContainsKey(arr[i])) mp[arr[i]] = 1; else mp[arr[i]]++; } int count = 0; // Initialize the count of pairs to zero // Traverse the array and check if arr[i] has a // factor in the dictionary for (int i = 0; i < n; i++) { for (int j = 1; j * j <= arr[i]; j++) { if (arr[i] % j == 0) { int factor1 = j; int factor2 = arr[i] / j; // If both factors are present in the // dictionary then increment the count // of pairs if (mp.ContainsKey(factor1) && mp.ContainsKey(factor2)) { if (factor1 == factor2 && mp[factor1] < 2) { continue; } count++; } } } } // Return the count of pairs return count; } // Driver code static void Main(string[] args) { // Example input int[] arr = { 6 2 4 12 5 3 }; int n = arr.Length; // Count pairs whose product value is present in // array int count = CountPairs(arr n); // Print the count Console.WriteLine(count); } }
JavaScript // Function to count pairs whose product value is present in the array function GFG(arr) { // Create a map to store the elements of the array // and their frequencies const mp = new Map(); // Initialize the map with the frequencies of the elements // in the array for (let i = 0; i < arr.length; i++) { if (!mp.has(arr[i])) { mp.set(arr[i] 0); } mp.set(arr[i] mp.get(arr[i]) + 1); } let count = 0; // Initialize the count of pairs to zero // Traverse the array and check if arr[i] has a factor in the map for (let i = 0; i < arr.length; i++) { for (let j = 1; j * j <= arr[i]; j++) { if (arr[i] % j === 0) { const factor1 = j; const factor2 = arr[i] / j; // If both factors are present in the map // then increment the count of pairs if (mp.has(factor1) && mp.has(factor2)) { if (factor1 === factor2 && mp.get(factor1) < 2) { continue; } count++; } } } } // Return the count of pairs return count; } // Driver code function main() { // Example input const arr = [6 2 4 12 5 3]; // Count pairs whose product value is present in the array const count = GFG(arr); // Print the count console.log(count); } main();
Išvestis:
3
Laiko sudėtingumas: O(n log n)
Pagalbinė erdvė: O(n)