logo

Patikrinkite, ar masyve yra du elementai, kurių suma lygi likusios masyvo dalies sumai

Turime sveikųjų skaičių masyvą ir turime rasti du tokius masyvo elementus, kad šių dviejų elementų suma būtų lygi likusių masyvo elementų sumai. 

Pavyzdžiai:  

Input : arr[] = {2 11 5 1 4 7} Output : Elements are 4 and 11 Note that 4 + 11 = 2 + 5 + 1 + 7 Input : arr[] = {2 4 2 1 11 15} Output : Elements do not exist 

A paprastas sprendimas yra apsvarstyti kiekvieną porą po vieną rasti jos sumą ir palyginti sumą su likusių elementų suma. Jei randame porą, kurios suma lygi likusiems elementams, išspausdiname porą ir grąžiname teisingą. Šio sprendimo laiko sudėtingumas yra O(n3)



An efektyvus sprendimas yra rasti visų masyvo elementų sumą. Tegul ši suma yra „suma“. Dabar užduotis redukuojama iki poros, kurios suma lygi suma/2, paieška. 

Kitas optimizavimas yra tai, kad pora gali egzistuoti tik tuo atveju, jei viso masyvo suma yra lygi, nes mes iš esmės padalijame ją į dvi dalis su lygia suma.

  1. Raskite viso masyvo sumą. Tegul ši suma yra „suma“ 
  2. Jei suma yra nelyginė, grąžinkite klaidingą. 
  3. Raskite porą, kurios suma lygi „suma/2“, naudodami aptartą maišos metodą čia kaip 2 metodas. Jei rasta pora, atspausdinkite ją ir grąžinkite teisingą. 
  4. Jei poros nėra, grąžinkite false.

Žemiau pateikiamas pirmiau minėtų veiksmų įgyvendinimas.

C++
// C++ program to find whether two elements exist // whose sum is equal to sum of rest of the elements. #include    using namespace std; // Function to check whether two elements exist // whose sum is equal to sum of rest of the elements. bool checkPair(int arr[] int n) {  // Find sum of whole array  int sum = 0;  for (int i = 0; i < n; i++)  sum += arr[i];  // If sum of array is not even then we can not  // divide it into two part  if (sum % 2 != 0)  return false;  sum = sum / 2;  // For each element arr[i] see if there is  // another element with value sum - arr[i]  unordered_set<int> s;  for (int i = 0; i < n; i++) {  int val = sum - arr[i];  // If element exist than return the pair  if (s.find(val) != s.end()) {  printf('Pair elements are %d and %dn' arr[i]  val);  return true;  }  s.insert(arr[i]);  }  return false; } // Driver program. int main() {  int arr[] = { 2 11 5 1 4 7 };  int n = sizeof(arr) / sizeof(arr[0]);  if (checkPair(arr n) == false)  printf('No pair found');  return 0; } 
Java
// Java program to find whether two elements exist // whose sum is equal to sum of rest of the elements. import java.util.*; class GFG {  // Function to check whether two elements exist  // whose sum is equal to sum of rest of the elements.  static boolean checkPair(int arr[] int n)  {  // Find sum of whole array  int sum = 0;  for (int i = 0; i < n; i++) {  sum += arr[i];  }  // If sum of array is not even then we can not  // divide it into two part  if (sum % 2 != 0) {  return false;  }  sum = sum / 2;  // For each element arr[i] see if there is  // another element with value sum - arr[i]  HashSet<Integer> s = new HashSet<Integer>();  for (int i = 0; i < n; i++) {  int val = sum - arr[i];  // If element exist than return the pair  if (s.contains(val)  && val == (int)s.toArray()[s.size() - 1]) {  System.out.printf(  'Pair elements are %d and %dn' arr[i]  val);  return true;  }  s.add(arr[i]);  }  return false;  }  // Driver program.  public static void main(String[] args)  {  int arr[] = { 2 11 5 1 4 7 };  int n = arr.length;  if (checkPair(arr n) == false) {  System.out.printf('No pair found');  }  } } /* This code contributed by PrinciRaj1992 */ 
Python3
# Python3 program to find whether  # two elements exist whose sum is # equal to sum of rest of the elements.  # Function to check whether two  # elements exist whose sum is equal  # to sum of rest of the elements.  def checkPair(arr n): s = set() sum = 0 # Find sum of whole array  for i in range(n): sum += arr[i] # / If sum of array is not  # even then we can not  # divide it into two part  if sum % 2 != 0: return False sum = sum / 2 # For each element arr[i] see if  # there is another element with  # value sum - arr[i]  for i in range(n): val = sum - arr[i] if arr[i] not in s: s.add(arr[i]) # If element exist than  # return the pair  if val in s: print('Pair elements are' arr[i] 'and' int(val)) # Driver Code  arr = [2 11 5 1 4 7] n = len(arr) if checkPair(arr n) == False: print('No pair found') # This code is contributed  # by Shrikant13 
C#
// C# program to find whether two elements exist // whose sum is equal to sum of rest of the elements. using System;  using System.Collections.Generic;  class GFG  {    // Function to check whether two elements exist  // whose sum is equal to sum of rest of the elements.  static bool checkPair(int []arr int n)  {  // Find sum of whole array  int sum = 0;  for (int i = 0; i < n; i++)  {  sum += arr[i];  }  // If sum of array is not even then we can not  // divide it into two part  if (sum % 2 != 0)   {  return false;  }  sum = sum / 2;  // For each element arr[i] see if there is  // another element with value sum - arr[i]  HashSet<int> s = new HashSet<int>();  for (int i = 0; i < n; i++)  {  int val = sum - arr[i];  // If element exist than return the pair  if (s.Contains(val))  {  Console.Write('Pair elements are {0} and {1}n'  arr[i] val);  return true;  }  s.Add(arr[i]);  }  return false;  }  // Driver code  public static void Main(String[] args)  {  int []arr = {2 11 5 1 4 7};  int n = arr.Length;  if (checkPair(arr n) == false)   {  Console.Write('No pair found');  }  } } // This code contributed by Rajput-Ji 
PHP
 // PHP program to find whether two elements exist // whose sum is equal to sum of rest of the elements. // Function to check whether two elements exist // whose sum is equal to sum of rest of the elements. function checkPair(&$arr $n) { // Find sum of whole array $sum = 0; for ($i = 0; $i < $n; $i++) $sum += $arr[$i]; // If sum of array is not even then we  // can not divide it into two part if ($sum % 2 != 0) return false; $sum = $sum / 2; // For each element arr[i] see if there is // another element with value sum - arr[i] $s = array(); for ($i = 0; $i < $n; $i++) { $val = $sum - $arr[$i]; // If element exist than return the pair if (array_search($val $s)) { echo 'Pair elements are ' . $arr[$i] . ' and ' . $val . 'n'; return true; } array_push($s $arr[$i]); } return false; } // Driver Code $arr = array(2 11 5 1 4 7); $n = sizeof($arr); if (checkPair($arr $n) == false) echo 'No pair found'; // This code is contributed by ita_c ?> 
JavaScript
<script> // Javascript program to find  // whether two elements exist // whose sum is equal to sum of rest // of the elements.     // Function to check whether   // two elements exist  // whose sum is equal to sum of   // rest of the elements.  function checkPair(arrn)  {  // Find sum of whole array  let sum = 0;  for (let i = 0; i < n; i++)  {  sum += arr[i];  }    // If sum of array is not even then we can not  // divide it into two part  if (sum % 2 != 0)   {  return false;  }    sum = Math.floor(sum / 2);    // For each element arr[i] see if there is  // another element with value sum - arr[i]  let s = new Set();  for (let i = 0; i < n; i++)  {  let val = sum - arr[i];    // If element exist than return the pair    if(!s.has(arr[i]))  {  s.add(arr[i])  }    if (s.has(val) )   {  document.write('Pair elements are '+  arr[i]+' and '+ val+'  
'
); return true; } s.add(arr[i]); } return false; } // Driver program. let arr=[2 11 5 1 4 7]; let n = arr.length; if (checkPair(arr n) == false) { document.write('No pair found'); } // This code is contributed by rag2127 </script>

Išvestis
Pair elements are 4 and 11

Laiko sudėtingumas: O(n) . unordered_set yra įgyvendinamas naudojant maišą. Laiko sudėtingumo maišos paieška ir įterpimas čia laikomas O(1).
Pagalbinė erdvė: O(n)

Kitas efektyvus metodas (erdvės optimizavimas): Pirmiausia surūšiuosime masyvą pagal Dvejetainė paieška . Tada pakartosime visą masyvą ir patikrinsime, ar masyve yra indeksas, susietas su i taip, kad arr[index] + a[i] == Masyvo likusi suma . Galime naudoti dvejetainę paiešką, kad rastume indeksą masyve, pakeisdami dvejetainės paieškos programą. Jei pora egzistuoja, atspausdinkite tą porą. Kitu atveju spausdinti nėra poros.

Žemiau pateikiamas pirmiau minėto metodo įgyvendinimas:

C++
// C++ program for the above approach #include   using namespace std; // Function to Find if a index exist in array such that // arr[index] + a[i] == Rest sum of the array int binarysearch(int arr[] int n int i int Totalsum) {   int l = 0 r = n - 1  index = -1;//initialize as -1  while (l <= r)   { int mid = (l + r) / 2;    int Pairsum = arr[mid] + arr[i];//pair sum  int Restsum = Totalsum - Pairsum;//Rest sum    if ( Pairsum == Restsum )  {  if( index != i )// checking a pair has same position or not  { index = mid; }//Then update index -1 to mid    // Checking for adjacent element  else if(index == i && mid>0 && arr[mid-1]==arr[i])  { index = mid-1; }//Then update index -1 to mid-1    else if(index == i && mid<n-1 && arr[mid+1]==arr[i])   { index = mid+1; } //Then update index-1 to mid+1   break;   }  else if (Pairsum > Restsum)   { // If pair sum is greater than rest sum  our index will  // be in the Range [mid+1R]  l = mid + 1;  }  else {  // If pair sum is smaller than rest sum  our index will  // be in the Range [Lmid-1]  r = mid - 1;  }  }  // return index=-1 if a pair not exist with arr[i]  // else return index such that arr[i]+arr[index] == sum of rest of arr  return index; } // Function to check if a pair exist such their sum  // equal to rest of the array or not  bool checkPair(int arr[]int n) { int Totalsum=0;  sort(arr  arr + n);//sort arr for Binary search    for(int i=0;i<n;i++)  { Totalsum+=arr[i]; } //Finding total sum of the arr    for(int i=0;i<n;i++)  { // If index is -1  Means arr[i] can't pair with any element   // else arr[i]+a[index] == sum of rest of the arr  int index = binarysearch(arr n iTotalsum) ;    if(index != -1) {   cout<<'Pair elements are '<< arr[i]<<' and '<< arr[index];  return true;  }  }  return false;//Return false if a pair not exist } // Driver Code int main() {  int arr[] = {2 11 5 1 4 7};  int n = sizeof(arr)/sizeof(arr[0]);    //Function call  if (checkPair(arr n) == false)  { cout<<'No pair found'; }  return 0; } // This Approach is contributed by nikhilsainiofficial546  
Java
// Java program for the above approach import java.util.*; class GFG {  // Function to Find if a index exist in array such that  // arr[index] + a[i] == Rest sum of the array  static int binarysearch(int arr[] int n int i  int Totalsum)  {  int l = 0 r = n - 1 index = -1; // initialize as -1  while (l <= r) {  int mid = (l + r) / 2;  int Pairsum = arr[mid] + arr[i]; // pair sum  int Restsum = Totalsum - Pairsum; // Rest sum  if (Pairsum == Restsum) {  if (index != i) // checking a pair has same  // position or not  {  index = mid;  } // Then update index -1 to mid  // Checking for adjacent element  else if (index == i && mid > 0  && arr[mid - 1] == arr[i]) {  index = mid - 1;  } // Then update index -1 to mid-1  else if (index == i && mid < n - 1  && arr[mid + 1] == arr[i]) {  index = mid + 1;  } // Then update index-1 to mid+1  break;  }  else if (Pairsum > Restsum) {  // If pair sum is greater than rest sum   // our index will be in the Range [mid+1R]  l = mid + 1;  }  else {  // If pair sum is smaller than rest sum   // our index will be in the Range [Lmid-1]  r = mid - 1;  }  }  // return index=-1 if a pair not exist with arr[i]  // else return index such that arr[i]+arr[index] ==  // sum of rest of arr  return index;  }  // Function to check if a pair exist such their sum  // equal to rest of the array or not  static boolean checkPair(int arr[] int n)  {  int Totalsum = 0;  Arrays.sort(arr); // sort arr for Binary search  for (int i = 0; i < n; i++) {  Totalsum += arr[i];  } // Finding total sum of the arr  for (int i = 0; i < n; i++) {  // If index is -1  Means arr[i] can't pair with  // any element else arr[i]+a[index] == sum of  // rest of the arr  int index = binarysearch(arr n i Totalsum);  if (index != -1) {  System.out.println('Pair elements are '  + arr[i] + ' and '  + arr[index]);  return true;  }  }  return false; // Return false if a pair not exist  }  // Driver Code  public static void main(String[] args)  {  int arr[] = { 2 11 5 1 4 7 };  int n = arr.length;  // Function call  if (checkPair(arr n) == false) {  System.out.println('No pair found');  }  } } 
Python3
# Python program for the above approach # Function to find if a index exist in array such that # arr[index] + a[i] == Rest sum of the array def binarysearch(arr n i Totalsum): l = 0 r = n - 1 index = -1 # Initialize as -1 while l <= r: mid = (l + r) // 2 Pairsum = arr[mid] + arr[i] # Pair sum Restsum = Totalsum - Pairsum # Rest sum if Pairsum == Restsum: if index != i: # Checking if a pair has the same position or not index = mid # Then update index -1 to mid # Checking for adjacent element elif index == i and mid > 0 and arr[mid - 1] == arr[i]: index = mid - 1 # Then update index -1 to mid-1 elif index == i and mid < n - 1 and arr[mid + 1] == arr[i]: index = mid + 1 # Then update index-1 to mid+1 break elif Pairsum > Restsum: # If pair sum is greater than rest sum our index will # be in the Range [mid+1R] l = mid + 1 else: # If pair sum is smaller than rest sum our index will # be in the Range [Lmid-1] r = mid - 1 # Return index=-1 if a pair not exist with arr[i] # else return index such that arr[i]+arr[index] == sum of rest of arr return index # Function to check if a pair exists such that their sum # equals to rest of the array or not def checkPair(arr n): Totalsum = 0 arr = sorted(arr) # Sort arr for Binary search for i in range(n): Totalsum += arr[i] # Finding total sum of the arr for i in range(n): # If index is -1 means arr[i] can't pair with any element # else arr[i]+a[index] == sum of rest of the arr index = binarysearch(arr n i Totalsum) if index != -1: print('Pair elements are' arr[i] 'and' arr[index]) return True return False # Return false if a pair not exist # Driver Code arr = [2 11 5 1 4 7] n = len(arr) # Function call if checkPair(arr n) == False: print('No pair found') 
C#
using System; class GFG {  // Function to Find if a index exist in array such that  // arr[index] + a[i] == Rest sum of the array  static int BinarySearch(int[] arr int n int i int totalSum)  {  int l = 0 r = n - 1 index = -1; // initialize as -1  while (l <= r)  {  int mid = (l + r) / 2;  int pairSum = arr[mid] + arr[i]; // pair sum  int restSum = totalSum - pairSum; // rest sum  if (pairSum == restSum)  {  if (index != i) // checking a pair has same  // position or not  {  index = mid;  } // Then update index -1 to mid  // Checking for adjacent element  else if (index == i && mid > 0  && arr[mid - 1] == arr[i])  {  index = mid - 1;  } // Then update index -1 to mid-1  else if (index == i && mid < n - 1  && arr[mid + 1] == arr[i])  {  index = mid + 1;  } // Then update index-1 to mid+1  break;  }  else if (pairSum > restSum)  {  // If pair sum is greater than rest sum   // our index will be in the Range [mid+1R]  l = mid + 1;  }  else  {  // If pair sum is smaller than rest sum   // our index will be in the Range [Lmid-1]  r = mid - 1;  }  }  // return index=-1 if a pair not exist with arr[i]  // else return index such that arr[i]+arr[index] ==  // sum of rest of arr  return index;  }  // Function to check if a pair exist such their sum  // equal to rest of the array or not  static bool CheckPair(int[] arr int n)  {  int totalSum = 0;  Array.Sort(arr); // sort arr for Binary search  for (int i = 0; i < n; i++)  {  totalSum += arr[i];  } // Finding total sum of the arr  for (int i = 0; i < n; i++)  {  // If index is -1  Means arr[i] can't pair with  // any element else arr[i]+a[index] == sum of  // rest of the arr  int index = BinarySearch(arr n i totalSum);  if (index != -1)  {  Console.WriteLine('Pair elements are ' + arr[i] + ' and ' + arr[index]);  return true;  }  }  return false; // Return false if a pair not exist  }  // Driver Code  static void Main(string[] args)  {  int[] arr = { 2 11 5 1 4 7 };  int n = arr.Length;  // Function call  if (!CheckPair(arr n))  {  Console.WriteLine('No pair found');  }  } } 
JavaScript
// JavaScript program for the above approach // function to find if a index exist in array such that // arr[index] + a[i] == Rest sum of the array function binarysearch(arr n i TotalSum){  let l = 0;  let r = n-1;  let index = -1;    while(l <= r){  let mid = parseInt((l+r)/2);  let Pairsum = arr[mid] + arr[i];  let Restsum = TotalSum - Pairsum;    if ( Pairsum == Restsum )  {  if( index != i )// checking a pair has same position or not  { index = mid; }//Then update index -1 to mid    // Checking for adjacent element  else if(index == i && mid>0 && arr[mid-1]==arr[i])  { index = mid-1; }//Then update index -1 to mid-1    else if(index == i && mid<n-1 && arr[mid+1]==arr[i])  { index = mid+1; } //Then update index-1 to mid+1   break;  }  else if (Pairsum > Restsum)  { // If pair sum is greater than rest sum  our index will  // be in the Range [mid+1R]  l = mid + 1;  }  else {  // If pair sum is smaller than rest sum  our index will  // be in the Range [Lmid-1]  r = mid - 1;  }  }  // return index=-1 if a pair not exist with arr[i]  // else return index such that arr[i]+arr[index] == sum of rest of arr  return index; } // Function to check if a pair exist such their sum // equal to rest of the array or not function checkPair(arr n){  let Totalsum = 0;  arr.sort(function(a b){return a - b});    for(let i=0;i<n;i++)  { Totalsum+=arr[i]; } //Finding total sum of the arr    for(let i=0;i<n;i++)  { // If index is -1  Means arr[i] can't pair with any element  // else arr[i]+a[index] == sum of rest of the arr  let index = binarysearch(arr n iTotalsum) ;    if(index != -1) {  console.log('Pair elements are ' + arr[i] + ' and ' + arr[index]);  return true;  }  }  return false;//Return false if a pair not exist } // driver code to test above function let arr = [2 11 5 1 4 7]; let n = arr.length; // function call if(checkPair(arr n) == false)   console.log('No Pair Found')    // THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002) 

Išvestis
Pair elements are 11 and 4

Laiko sudėtingumas: O(n * prisijungimas) 
Pagalbinė erdvė: O(1)

kur yra nešiojamojo kompiuterio klaviatūros įterpimo klavišas

 

Sukurti viktoriną