Duota 2D dvejetainė matrica N eilutes ir M stulpelius. Užduotis yra patikrinti, ar matrica yra horizontaliai simetriška, vertikali simetriška, ar abi. Matrica laikoma horizontalia simetriška, jei pirmoji eilutė yra tokia pati kaip paskutinė eilutė, antroji eilutė yra tokia pati kaip antroji paskutinė eilutė ir pan. Ir sakoma, kad matrica yra vertikali simetriška, jei pirmasis stulpelis yra toks pat kaip paskutinis stulpelis, antrasis stulpelis yra toks pat kaip antrasis paskutinis stulpelis ir pan.
spausdinti VERTIKALUS "jei matrica yra vertikaliai simetriška" HORIZONTALUS "jei matrica yra vertikaliai simetriška" ABU "jei matrica yra vertikali ir horizontali simetriška ir " NE “, jei ne simetriškas.
Pavyzdžiai:
Įvestis: N = 3 M = 3
0 1 0
0 0 0
0 1 0
Išvestis: Abu
Paaiškinimas: Pirma ir trečia eilutės yra vienodos, o antra eilutė yra viduryje. Taigi horizontalus simetriškas. Panašiai pirmasis ir trečias stulpeliai yra vienodi, o antrasis stulpelis yra viduryje, todėl vertikali simetriška.Įvestis: N = 3 M = 3
0 0 1
1 1 0
0 0 1
Išvestis: Abu
Prieiga: Idėja yra naudoti rodykles, nurodančias dvi eilutes (arba stulpelius), ir palyginti kiekvieną abiejų smailių eilučių (arba stulpelių) langelį.
- Horizontaliajai simetrijai inicijuokite vieną rodyklę i = 0 ir kitą rodyklę j = N - 1.
- Dabar palyginkite kiekvieną i-osios ir j-osios eilės elementą. Kiekviename cikle padidinkite i 1 ir sumažinkite j 1.
- Jei randamas bent vienas ne identiškas elementas, pažymėkite matricą kaip nehorizontalią simetrišką.
- Panašiai vertikaliajai simetrijai inicijuokite vieną rodyklę i = 0, o kitą - j = M - 1.
- Dabar palyginkite kiekvieną i-ojo ir j-ojo stulpelio elementą. Kiekviename cikle padidinkite i 1 ir sumažinkite j 1.
- Jei randamas bent vienas ne identiškas elementas, pažymėkite matricą kaip ne vertikalią simetrišką.
Žemiau pateikiamas aukščiau pateiktos idėjos įgyvendinimas:
C++// C++ program to find if a matrix is symmetric. #include #define MAX 1000 using namespace std; void checkHV(int arr[][MAX] int N int M) { // Initializing as both horizontal and vertical // symmetric. bool horizontal = true vertical = true; // Checking for Horizontal Symmetry. We compare // first row with last row second row with second // last row and so on. for (int i = 0 k = N - 1; i < N / 2; i++ k--) { // Checking each cell of a column. for (int j = 0; j < M; j++) { // check if every cell is identical if (arr[i][j] != arr[k][j]) { horizontal = false; break; } } } // Checking for Vertical Symmetry. We compare // first column with last column second column // with second last column and so on. for (int j = 0 k = M - 1; j < M / 2; j++ k--) { // Checking each cell of a row. for (int i = 0; i < N; i++) { // check if every cell is identical if (arr[i][j] != arr[i][k]) { vertical = false; break; } } } if (!horizontal && !vertical) cout << 'NOn'; else if (horizontal && !vertical) cout << 'HORIZONTALn'; else if (vertical && !horizontal) cout << 'VERTICALn'; else cout << 'BOTHn'; } // Driven Program int main() { int mat[MAX][MAX] = { { 0 1 0 } { 0 0 0 } { 0 1 0 } }; checkHV(mat 3 3); return 0; }
Java // Java program to find if // a matrix is symmetric. import java.io.*; public class GFG { static void checkHV(int[][] arr int N int M) { // Initializing as both horizontal // and vertical symmetric. boolean horizontal = true; boolean vertical = true; // Checking for Horizontal Symmetry. // We compare first row with last // row second row with second // last row and so on. for (int i = 0 k = N - 1; i < N / 2; i++ k--) { // Checking each cell of a column. for (int j = 0; j < M; j++) { // check if every cell is identical if (arr[i][j] != arr[k][j]) { horizontal = false; break; } } } // Checking for Vertical Symmetry. We compare // first column with last column second column // with second last column and so on. for (int j = 0 k = M - 1; j < M / 2; j++ k--) { // Checking each cell of a row. for (int i = 0; i < N; i++) { // check if every cell is identical if (arr[i][j] != arr[i][k]) { horizontal = false; break; } } } if (!horizontal && !vertical) System.out.println('NO'); else if (horizontal && !vertical) System.out.println('HORIZONTAL'); else if (vertical && !horizontal) System.out.println('VERTICAL'); else System.out.println('BOTH'); } // Driver Code static public void main(String[] args) { int[][] mat = { { 1 0 1 } { 0 0 0 } { 1 0 1 } }; checkHV(mat 3 3); } } // This code is contributed by vt_m.
Python3 # Python3 program to find if a matrix is symmetric. MAX = 1000 def checkHV(arr N M): # Initializing as both horizontal and vertical # symmetric. horizontal = True vertical = True # Checking for Horizontal Symmetry. We compare # first row with last row second row with second # last row and so on. i = 0 k = N - 1 while(i < N // 2): # Checking each cell of a column. for j in range(M): # check if every cell is identical if (arr[i][j] != arr[k][j]): horizontal = False break i += 1 k -= 1 # Checking for Vertical Symmetry. We compare # first column with last column second column # with second last column and so on. i = 0 k = M - 1 while(j < M // 2): # Checking each cell of a row. for i in range(N): # check if every cell is identical if (arr[i][j] != arr[i][k]): vertical = False break j += 1 k -= 1 if (not horizontal and not vertical): print('NO') elif (horizontal and not vertical): print('HORIZONTAL') elif (vertical and not horizontal): print('VERTICAL') else: print('BOTH') # Driver code mat = [[1 0 1] [0 0 0] [1 0 1]] checkHV(mat 3 3) # This code is contributed by shubhamsingh10
C# // C# program to find if // a matrix is symmetric. using System; public class GFG { static void checkHV(int[ ] arr int N int M) { // Initializing as both horizontal // and vertical symmetric. bool horizontal = true; bool vertical = true; // Checking for Horizontal Symmetry. // We compare first row with last // row second row with second // last row and so on. for (int j = 0 k = N - 1; j < N / 2; j++ k--) { // Checking each cell of a column. for (int i = 0; i < M; i++) { // check if every cell is identical if (arr[i j] != arr[i k]) { horizontal = false; break; } } } // Checking for Vertical Symmetry. We compare // first column with last column second column // with second last column and so on. for (int i = 0 k = M - 1; i < M / 2; i++ k--) { // Checking each cell of a row. for (int j = 0; j < N; j++) { // check if every cell is identical if (arr[i j] != arr[k j]) { horizontal = false; break; } } } if (!horizontal && !vertical) Console.WriteLine('NO'); else if (horizontal && !vertical) Console.WriteLine('HORIZONTAL'); else if (vertical && !horizontal) Console.WriteLine('VERTICAL'); else Console.WriteLine('BOTH'); } // Driver Code static public void Main() { int[ ] mat = { { 1 0 1 } { 0 0 0 } { 1 0 1 } }; checkHV(mat 3 3); } } // This code is contributed by vt_m.
PHP // PHP program to find if // a matrix is symmetric. function checkHV($arr $N $M) { // Initializing as both horizontal // and vertical symmetric. $horizontal = true; $vertical = true; // Checking for Horizontal Symmetry. // We compare first row with last row // second row with second last row // and so on. for ($i = 0 $k = $N - 1; $i < $N / 2; $i++ $k--) { // Checking each cell of a column. for ($j = 0; $j < $M; $j++) { // check if every cell is identical if ($arr[$i][$j] != $arr[$k][$j]) { $horizontal = false; break; } } } // Checking for Vertical Symmetry. // We compare first column with // last column second column with // second last column and so on. for ($j = 0 $k = $M - 1; $j < $M / 2; $j++ $k--) { // Checking each cell of a row. for ($i = 0; $i < $N; $i++) { // check if every cell is identical if ($arr[$i][$j] != $arr[$i][$k]) { $horizontal = false; break; } } } if (!$horizontal && !$vertical) echo 'NOn'; else if ($horizontal && !$vertical) cout << 'HORIZONTALn'; else if ($vertical && !$horizontal) echo 'VERTICALn'; else echo 'BOTHn'; } // Driver Code $mat = array(array (1 0 1) array (0 0 0) array (1 0 1)); checkHV($mat 3 3); // This code is contributed by nitin mittal. ?> JavaScript <script> // Javascript program to find if // a matrix is symmetric. function checkHV(arr N M) { // Initializing as both horizontal // and vertical symmetric. let horizontal = true; let vertical = true; // Checking for Horizontal Symmetry. // We compare first row with last // row second row with second // last row and so on. for (let i = 0 k = N - 1; i < parseInt(N / 2 10); i++ k--) { // Checking each cell of a column. for (let j = 0; j < M; j++) { // check if every cell is identical if (arr[i][j] != arr[k][j]) { horizontal = false; break; } } } // Checking for Vertical Symmetry. We compare // first column with last column second column // with second last column and so on. for (let j = 0 k = M - 1; j < parseInt(M / 2 10); j++ k--) { // Checking each cell of a row. for (let i = 0; i < N; i++) { // check if every cell is identical if (arr[i][j] != arr[i][k]) { horizontal = false; break; } } } if (!horizontal && !vertical) document.write('NO'); else if (horizontal && !vertical) document.write('HORIZONTAL'); else if (vertical && !horizontal) document.write('VERTICAL'); else document.write('BOTH'); } let mat = [ [ 1 0 1 ] [ 0 0 0 ] [ 1 0 1 ] ]; checkHV(mat 3 3); </script>
Išvestis
BOTH
Laiko sudėtingumas: O(N*M).
Pagalbinė erdvė: O(1)