logo

Dvejetainis indeksuotas medis: diapazono atnaujinimas ir diapazono užklausos

Duotas masyvas arr[0..N-1]. Reikia atlikti šias operacijas. 

  1. atnaujinimas (l r val) : pridėkite „val“ prie visų masyvo elementų iš [l r].
  2. gautiRangeSum(l r) : Raskite visų masyvo elementų sumą iš [l r].

Iš pradžių visi masyvo elementai yra 0. Užklausos gali būti bet kokia tvarka, ty gali būti daug atnaujinimų prieš diapazono sumą.



Pavyzdys:

Įvestis: N = 5  // {0 0 0 0 0}
Užklausos: atnaujinimas: l = 0 r = 4 val = 2
               atnaujinimas: l = 3 r = 4 val = 3 
               gautiRangeSum : l = 2 r = 4

Išvestis: Diapazono [2 4] elementų suma yra 12
Paaiškinimas: Masyvas po pirmojo atnaujinimo tampa {2 2 2 2 2}
Masyvas po antrojo atnaujinimo tampa {2 2 2 5 5}



Naivus požiūris: Norėdami išspręsti problemą, vadovaukitės toliau pateikta idėja:

Į ankstesnis įrašas aptarėme diapazono atnaujinimo ir taško užklausų sprendimus naudojant BIT. 
rangeUpdate(l r val) : Prie indekso 'l' elemento pridedame 'val'. Mes atimame „val“ iš elemento, esančio indekse „r+1“. 
getElement(index) [arba getSum()]: grąžiname elementų sumą nuo 0 iki indekso, kurią galima greitai gauti naudojant BIT.
Mes galime apskaičiuoti rangeSum() naudodami getSum() užklausas. 
rangeSum(l r) = getSum(r) - getSum(l-1)

git add --all

Paprastas sprendimas yra naudoti sprendimus, aptartus ankstesnis įrašas . Diapazono atnaujinimo užklausa yra tokia pati. Diapazono sumos užklausą galima pasiekti atlikus visų diapazono elementų gavimo užklausą. 



Efektyvus požiūris: Norėdami išspręsti problemą, vadovaukitės toliau pateikta idėja:

Mes gauname diapazono sumą naudodami priešdėlių sumas. Kaip įsitikinti, kad naujinimas atliktas taip, kad prefikso sumą būtų galima atlikti greitai? Apsvarstykite situaciją, kai priešdėlio suma [0 k] (kur 0<= k < n) is needed after range update on the range [l r]. Three cases arise as k can possibly lie in 3 regions.

  • 1 atvejis : 0< k < l 
    • Atnaujinimo užklausa neturės įtakos sumos užklausai.
  • 2 atvejis : l<= k <= r 
    • Apsvarstykite pavyzdį:  Pridėkite 2 prie diapazono [2 4], gautas masyvas būtų toks: 0 0 2 2 2
      Jei k = 3, suma iš [0 k] = 4

Kaip gauti šį rezultatą? 
Tiesiog pridėkite val nuo lthindeksas į kthindeksas. Po atnaujinimo užklausos suma padidinama „val*(k) – val*(l-1)“. 

  • 3 atvejis : k > r 
    • Šiuo atveju turime pridėti „val“ iš lthindeksas į rthindeksas. Suma padidinama 'val*r – val*(l-1)' dėl atnaujinimo užklausos.

Pastebėjimai:  

1 atvejis: yra paprasta, nes suma išliks tokia pati, kokia buvo prieš atnaujinimą.

2 atvejis: Suma padidinta val*k – val*(l-1). Galime rasti „val“, tai panašu į i radimąthelementas viduje diapazono atnaujinimo ir taško užklausos straipsnis . Taigi mes palaikome vieną BIT diapazono atnaujinimui ir taškų užklausoms, šis BIT bus naudingas ieškant k reikšmęthindeksas. Dabar apskaičiuojamas val * k, kaip tvarkyti papildomą terminą val*(l-1)? 
Siekdami apdoroti šį papildomą terminą, palaikome kitą BIT (BIT2). Atnaujinti val * (l-1) adresu lthindeksas, todėl kai užklausa getSum bus atlikta BIT2, rezultatas bus val*(l-1).

3 atvejis: 3 atveju suma buvo padidinta 'val*r - val *(l-1)', šio termino reikšmę galima gauti naudojant BIT2. Užuot pridėję, atimame „val*(l-1) - val*r“, nes šią reikšmę galime gauti iš BIT2 pridėdami val*(l-1), kaip padarėme 2 atveju, ir atimdami val*r kiekvienoje atnaujinimo operacijoje.

gimp kaip panaikinti pasirinkimą

Atnaujinti užklausą 

Atnaujinimas (BITree1 l val)
Atnaujinimas (BITree1 r+1 -val)
AtnaujintiBIT2(BITree2 l val*(l-1))
AtnaujintiBIT2 (BITree2 r+1 -val*r)

Diapazono suma 

getSum(BITTree1 k) *k) - getSum(BITTree2 k)

Norėdami išspręsti problemą, atlikite toliau nurodytus veiksmus.

  • Sukurkite du dvejetainius indekso medžius naudodami nurodytą funkciją constructBITree()
  • Norėdami rasti sumą tam tikrame diapazone, iškvieskite funkciją rangeSum() su parametrais kaip nurodyta diapazone ir dvejetainiais indeksuotais medžiais
    • Iškvieskite funkcijos sumą, kuri grąžins sumą diapazone [0 X]
    • Grąžinimo suma(R) – suma(L-1)
      • Šios funkcijos viduje iškvieskite funkciją getSum(), kuri grąžins masyvo sumą iš [0 X]
      • Grąžinti getSum(tree1 x) * x - getSum(tree2 x)
      • Funkcijos getSum() viduje sukurkite sveikojo skaičiaus sumą, lygią nuliui, ir padidinkite indeksą 1
      • Jei indeksas yra didesnis nei nulis, padidinkite sumą Tree[index]
      • Sumažinkite indeksą (index & (-index)), kad perkeltumėte indeksą į pagrindinį medžio mazgą
      • Grąžinimo suma
  • Atspausdinkite sumą duotame diapazone

Toliau pateikiamas pirmiau minėto metodo įgyvendinimas: 

C++
// C++ program to demonstrate Range Update // and Range Queries using BIT #include    using namespace std; // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] int getSum(int BITree[] int index) {  int sum = 0; // Initialize result  // index in BITree[] is 1 more than the index in arr[]  index = index + 1;  // Traverse ancestors of BITree[index]  while (index > 0) {  // Add current element of BITree to sum  sum += BITree[index];  // Move index to parent node in getSum View  index -= index & (-index);  }  return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. void updateBIT(int BITree[] int n int index int val) {  // index in BITree[] is 1 more than the index in arr[]  index = index + 1;  // Traverse all ancestors and add 'val'  while (index <= n) {  // Add 'val' to current node of BI Tree  BITree[index] += val;  // Update index to that of parent in update View  index += index & (-index);  } } // Returns the sum of array from [0 x] int sum(int x int BITTree1[] int BITTree2[]) {  return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } void updateRange(int BITTree1[] int BITTree2[] int n  int val int l int r) {  // Update Both the Binary Index Trees  // As discussed in the article  // Update BIT1  updateBIT(BITTree1 n l val);  updateBIT(BITTree1 n r + 1 -val);  // Update BIT2  updateBIT(BITTree2 n l val * (l - 1));  updateBIT(BITTree2 n r + 1 -val * r); } int rangeSum(int l int r int BITTree1[] int BITTree2[]) {  // Find sum from [0r] then subtract sum  // from [0l-1] in order to find sum from  // [lr]  return sum(r BITTree1 BITTree2)  - sum(l - 1 BITTree1 BITTree2); } int* constructBITree(int n) {  // Create and initialize BITree[] as 0  int* BITree = new int[n + 1];  for (int i = 1; i <= n; i++)  BITree[i] = 0;  return BITree; } // Driver code int main() {  int n = 5;  // Construct two BIT  int *BITTree1 *BITTree2;  // BIT1 to get element at any index  // in the array  BITTree1 = constructBITree(n);  // BIT 2 maintains the extra term  // which needs to be subtracted  BITTree2 = constructBITree(n);  // Add 5 to all the elements from [04]  int l = 0 r = 4 val = 5;  updateRange(BITTree1 BITTree2 n val l r);  // Add 10 to all the elements from [24]  l = 2 r = 4 val = 10;  updateRange(BITTree1 BITTree2 n val l r);  // Find sum of all the elements from  // [14]  l = 1 r = 4;  cout << 'Sum of elements from [' << l << '' << r  << '] is ';  cout << rangeSum(l r BITTree1 BITTree2) << 'n';  return 0; } 
Java
// Java program to demonstrate Range Update // and Range Queries using BIT import java.util.*; class GFG {  // Returns sum of arr[0..index]. This function assumes  // that the array is preprocessed and partial sums of  // array elements are stored in BITree[]  static int getSum(int BITree[] int index)  {  int sum = 0; // Initialize result  // index in BITree[] is 1 more than the index in  // arr[]  index = index + 1;  // Traverse ancestors of BITree[index]  while (index > 0) {  // Add current element of BITree to sum  sum += BITree[index];  // Move index to parent node in getSum View  index -= index & (-index);  }  return sum;  }  // Updates a node in Binary Index Tree (BITree) at given  // index in BITree. The given value 'val' is added to  // BITree[i] and all of its ancestors in tree.  static void updateBIT(int BITree[] int n int index  int val)  {  // index in BITree[] is 1 more than the index in  // arr[]  index = index + 1;  // Traverse all ancestors and add 'val'  while (index <= n) {  // Add 'val' to current node of BI Tree  BITree[index] += val;  // Update index to that of parent in update View  index += index & (-index);  }  }  // Returns the sum of array from [0 x]  static int sum(int x int BITTree1[] int BITTree2[])  {  return (getSum(BITTree1 x) * x)  - getSum(BITTree2 x);  }  static void updateRange(int BITTree1[] int BITTree2[]  int n int val int l int r)  {  // Update Both the Binary Index Trees  // As discussed in the article  // Update BIT1  updateBIT(BITTree1 n l val);  updateBIT(BITTree1 n r + 1 -val);  // Update BIT2  updateBIT(BITTree2 n l val * (l - 1));  updateBIT(BITTree2 n r + 1 -val * r);  }  static int rangeSum(int l int r int BITTree1[]  int BITTree2[])  {  // Find sum from [0r] then subtract sum  // from [0l-1] in order to find sum from  // [lr]  return sum(r BITTree1 BITTree2)  - sum(l - 1 BITTree1 BITTree2);  }  static int[] constructBITree(int n)  {  // Create and initialize BITree[] as 0  int[] BITree = new int[n + 1];  for (int i = 1; i <= n; i++)  BITree[i] = 0;  return BITree;  }  // Driver Program to test above function  public static void main(String[] args)  {  int n = 5;  // Contwo BIT  int[] BITTree1;  int[] BITTree2;  // BIT1 to get element at any index  // in the array  BITTree1 = constructBITree(n);  // BIT 2 maintains the extra term  // which needs to be subtracted  BITTree2 = constructBITree(n);  // Add 5 to all the elements from [04]  int l = 0 r = 4 val = 5;  updateRange(BITTree1 BITTree2 n val l r);  // Add 10 to all the elements from [24]  l = 2;  r = 4;  val = 10;  updateRange(BITTree1 BITTree2 n val l r);  // Find sum of all the elements from  // [14]  l = 1;  r = 4;  System.out.print('Sum of elements from [' + l + ''  + r + '] is ');  System.out.print(rangeSum(l r BITTree1 BITTree2)  + 'n');  } } // This code is contributed by 29AjayKumar 
Python3
# Python3 program to demonstrate Range Update # and Range Queries using BIT # Returns sum of arr[0..index]. This function assumes # that the array is preprocessed and partial sums of # array elements are stored in BITree[] def getSum(BITree: list index: int) -> int: summ = 0 # Initialize result # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse ancestors of BITree[index] while index > 0: # Add current element of BITree to sum summ += BITree[index] # Move index to parent node in getSum View index -= index & (-index) return summ # Updates a node in Binary Index Tree (BITree) at given # index in BITree. The given value 'val' is added to # BITree[i] and all of its ancestors in tree. def updateBit(BITTree: list n: int index: int val: int) -> None: # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse all ancestors and add 'val' while index <= n: # Add 'val' to current node of BI Tree BITTree[index] += val # Update index to that of parent in update View index += index & (-index) # Returns the sum of array from [0 x] def summation(x: int BITTree1: list BITTree2: list) -> int: return (getSum(BITTree1 x) * x) - getSum(BITTree2 x) def updateRange(BITTree1: list BITTree2: list n: int val: int l: int r: int) -> None: # Update Both the Binary Index Trees # As discussed in the article # Update BIT1 updateBit(BITTree1 n l val) updateBit(BITTree1 n r + 1 -val) # Update BIT2 updateBit(BITTree2 n l val * (l - 1)) updateBit(BITTree2 n r + 1 -val * r) def rangeSum(l: int r: int BITTree1: list BITTree2: list) -> int: # Find sum from [0r] then subtract sum # from [0l-1] in order to find sum from # [lr] return summation(r BITTree1 BITTree2) - summation( l - 1 BITTree1 BITTree2) # Driver Code if __name__ == '__main__': n = 5 # BIT1 to get element at any index # in the array BITTree1 = [0] * (n + 1) # BIT 2 maintains the extra term # which needs to be subtracted BITTree2 = [0] * (n + 1) # Add 5 to all the elements from [04] l = 0 r = 4 val = 5 updateRange(BITTree1 BITTree2 n val l r) # Add 10 to all the elements from [24] l = 2 r = 4 val = 10 updateRange(BITTree1 BITTree2 n val l r) # Find sum of all the elements from # [14] l = 1 r = 4 print('Sum of elements from [%d%d] is %d' % (l r rangeSum(l r BITTree1 BITTree2))) # This code is contributed by # sanjeev2552 
C#
// C# program to demonstrate Range Update // and Range Queries using BIT using System; class GFG {  // Returns sum of arr[0..index]. This function assumes  // that the array is preprocessed and partial sums of  // array elements are stored in BITree[]  static int getSum(int[] BITree int index)  {  int sum = 0; // Initialize result  // index in BITree[] is 1 more than  // the index in []arr  index = index + 1;  // Traverse ancestors of BITree[index]  while (index > 0) {  // Add current element of BITree to sum  sum += BITree[index];  // Move index to parent node in getSum View  index -= index & (-index);  }  return sum;  }  // Updates a node in Binary Index Tree (BITree) at given  // index in BITree. The given value 'val' is added to  // BITree[i] and all of its ancestors in tree.  static void updateBIT(int[] BITree int n int index  int val)  {  // index in BITree[] is 1 more than  // the index in []arr  index = index + 1;  // Traverse all ancestors and add 'val'  while (index <= n) {  // Add 'val' to current node of BI Tree  BITree[index] += val;  // Update index to that of  // parent in update View  index += index & (-index);  }  }  // Returns the sum of array from [0 x]  static int sum(int x int[] BITTree1 int[] BITTree2)  {  return (getSum(BITTree1 x) * x)  - getSum(BITTree2 x);  }  static void updateRange(int[] BITTree1 int[] BITTree2  int n int val int l int r)  {  // Update Both the Binary Index Trees  // As discussed in the article  // Update BIT1  updateBIT(BITTree1 n l val);  updateBIT(BITTree1 n r + 1 -val);  // Update BIT2  updateBIT(BITTree2 n l val * (l - 1));  updateBIT(BITTree2 n r + 1 -val * r);  }  static int rangeSum(int l int r int[] BITTree1  int[] BITTree2)  {  // Find sum from [0r] then subtract sum  // from [0l-1] in order to find sum from  // [lr]  return sum(r BITTree1 BITTree2)  - sum(l - 1 BITTree1 BITTree2);  }  static int[] constructBITree(int n)  {  // Create and initialize BITree[] as 0  int[] BITree = new int[n + 1];  for (int i = 1; i <= n; i++)  BITree[i] = 0;  return BITree;  }  // Driver Code  public static void Main(String[] args)  {  int n = 5;  // Contwo BIT  int[] BITTree1;  int[] BITTree2;  // BIT1 to get element at any index  // in the array  BITTree1 = constructBITree(n);  // BIT 2 maintains the extra term  // which needs to be subtracted  BITTree2 = constructBITree(n);  // Add 5 to all the elements from [04]  int l = 0 r = 4 val = 5;  updateRange(BITTree1 BITTree2 n val l r);  // Add 10 to all the elements from [24]  l = 2;  r = 4;  val = 10;  updateRange(BITTree1 BITTree2 n val l r);  // Find sum of all the elements from  // [14]  l = 1;  r = 4;  Console.Write('Sum of elements from [' + l + '' + r  + '] is ');  Console.Write(rangeSum(l r BITTree1 BITTree2)  + 'n');  } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // JavaScript program to demonstrate Range Update // and Range Queries using BIT // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] function getSum(BITreeindex) {  let sum = 0; // Initialize result    // index in BITree[] is 1 more than the index in arr[]  index = index + 1;    // Traverse ancestors of BITree[index]  while (index > 0)  {  // Add current element of BITree to sum  sum += BITree[index];    // Move index to parent node in getSum View  index -= index & (-index);  }  return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. function updateBIT(BITreenindexval) {  // index in BITree[] is 1 more than the index in arr[]  index = index + 1;    // Traverse all ancestors and add 'val'  while (index <= n)  {  // Add 'val' to current node of BI Tree  BITree[index] += val;    // Update index to that of parent in update View  index += index & (-index);  } } // Returns the sum of array from [0 x] function sum(xBITTree1BITTree2) {  return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } function updateRange(BITTree1BITTree2nvallr) {  // Update Both the Binary Index Trees  // As discussed in the article    // Update BIT1  updateBIT(BITTree1 n l val);  updateBIT(BITTree1 n r + 1 -val);    // Update BIT2  updateBIT(BITTree2 n l val * (l - 1));  updateBIT(BITTree2 n r + 1 -val * r); } function rangeSum(lrBITTree1BITTree2) {  // Find sum from [0r] then subtract sum  // from [0l-1] in order to find sum from  // [lr]  return sum(r BITTree1 BITTree2) -  sum(l - 1 BITTree1 BITTree2); } function constructBITree(n) {  // Create and initialize BITree[] as 0  let BITree = new Array(n + 1);  for (let i = 1; i <= n; i++)  BITree[i] = 0;    return BITree; } // Driver Program to test above function let n = 5;   // Contwo BIT let BITTree1; let BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] let l = 0  r = 4  val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 ; r = 4 ; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 ; r = 4; document.write('Sum of elements from [' + l  + '' + r+ '] is '); document.write(rangeSum(l r BITTree1 BITTree2)+ '  
'
); // This code is contributed by rag2127 </script>

Išvestis
Sum of elements from [14] is 50

Laiko sudėtingumas : O(q * log(N)), kur q yra užklausų skaičius.
Pagalbinė erdvė: O(N)